Skip to main content
Log in

Identification of nitric oxide responsive genes in the floral buds of Litchi chinensis

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Litchi (Litchi chinensis Sonn.) is an important tropical and subtropical evergreen woody fruit tree, and it has been shown that nitric oxide (NO) could promote litchi flowering. NO responsive genes of litchi (cv. Nuomici) primordia were identified through a suppression subtractive hybridization (SSH) library screen. We obtained 1 563 expressed sequences tags (ESTs) that were enriched in the NO treated inflorescence primordia. We then used a reverse Northern analysis to identify 728 true NO responsive ESTs, the sequences of which have been further analyzed. They represent 70 litchi unique genes that could be classified into 9 categories: 14 % of them were involved in transport facilitation, 7 % in transcription regulation, 9 % in stress response, 7 % in sugar metabolism, 9 % in secondary metabolism, 10 % in intracellular signalling, and 44 % in other metabolism, whereas 11 % were genes with unknown functions, and 7 % were genes with no hit found. Next, we performed a real-time quantitative polymerase chain reaction (RT-qPCR) to determine the expression of selected candidate genes during a time-course of NO treatment and of normal floral tissue development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANR:

anthocyanidin reductase

CHS:

chalcone synthase

DIG:

digoxin

EST:

expressed sequences tags

GA14:

gibberellin-regulated protein 14-like

IAA:

indole-acetic acid

IPTG:

isopropyl-β-D-thiogalactopyranoside

LB:

Luria Bertani

LFY :

LEAFY

ROS:

reactive oxygen species

RT-qPCR:

real-time quantitative polymerase chain reaction

SNP:

sodium nitroprusside

X-gal:

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside

References

  • Ali, A.G., Lovatt. C.J.: Relationship of polyamines to low-temperature stress-induced flowering of the ‘Washington’ navel orange (Citrus sinensis L. Osbeck). — J. hort. Sci. Biotechnol. 70: 491–498, 1995.

    CAS  Google Scholar 

  • Buer, C.S., Imin, N., Djordjevic, M.A.: Flavonoids: new roles for old molecules. — J. integr. Plant Biol. 52: 98–111, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H.B., Huang, H.B.: Low temperature requirements for floral induction in lychee. — Acta Hort. 665: 195–202, 2005.

    Google Scholar 

  • Coruzzi, G., Zhou, L.: Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’. — Curr. Opin. Plant Sci. 4: 247–253, 2001.

    Article  CAS  Google Scholar 

  • Dat, J., Vandenbeele, S., Vranova, E., Van Montagu, M., Inzé, D., Van Breusegem, F.: Dual action of the active oxygen species during plant stress responses. — Cell Mol. Life Sci. 57: 779–795, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Davenport, T.L., Stern, R.A.: Flowering. — In: Menzel, C.M., Waite, G.K. (ed.): Litchi and longan. Pp. 87–105. CABI, London 2005.

    Google Scholar 

  • Fan, W., Zhang, Z., Zhang, Y.: Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. — Plant Cell Rep. 28: 975–984, 2009.

    Article  CAS  PubMed  Google Scholar 

  • García-Mata, C., Lamattina, L.: Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. — Plant Physiol. 126: 1196–1204, 2001.

    Article  PubMed  Google Scholar 

  • Gibson, S.: Control of plant development and gene expression by sugar sensing. — Curr. Opin. Plant Biol. 8: 93–102, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Gould, K.S., Lamotte, O., Klinguer, A., Pugin, A., Wendehenne, D.: Nitric oxide production in tobacco leaf cells: a generalized stress response? — Plant Cell Environ. 26: 1851–1862, 2003.

    Article  CAS  Google Scholar 

  • Hermes, V.S., Dall’asta, P., Amaral, F.P., Anacleto, K.B., Arisi, A.C.M.: The regulation of transcription of genes related to oxidative stress and glutathione synthesis in Zea mays leaves by nitric oxide. — Biol. Plant. 57: 620–626, 2013.

    Article  CAS  Google Scholar 

  • Huang, H.B., Chen, H.B.: A phase approach towards floral formation in lychee. — Acta Hort. 665: 185–194, 2005.

    Google Scholar 

  • Livak, K.J., Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. — Methods 25: 402–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Ito, A., Hayama, H., Kashimura, Y.: Sugar metabolism in buds during flower bud formation: a comparison of two Japanese pear [Pyrus pyrifolia (Burm.) Nak.] cultivars possessing different flowering habits. — Sci. Hort. 96: 163–175, 2002.

    Article  CAS  Google Scholar 

  • Kocsy, G., Tari, I., Vankovád, R., Zechmann, B., Gulyás, Z., Poór, P., Galiba, G.: Redox control of plant growth and development. — Plant Sci. 211: 77–91, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V., Nadda, G., Kumar, S., Yadav, S.K.: Transgenic tobacco overexpressing tea cDNA encoding dihydroflavonol 4-reductase and anthocyanidin reductase induces early flowering and provides biotic stress tolerance. — PLOS one 8: e65535, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lebherz, H.G., Leadbetter, M.M., Bradshaw, R.A.: Isolation and characterization of cytosolic and chloroplastic forms of spinach leaf fructose diphosphate aldolase. — J. biol. Chem. 259: 1011–1017, 1984.

    CAS  PubMed  Google Scholar 

  • Li, T., Pang, Y., Dixon, R.: Biosynthesis and genetic engineering of proanthocyanidins and (iso) flavonoids. — Phytochem. Rev. 7: 445–465, 2008.

    Article  Google Scholar 

  • Liu, W.W., Kim, H.J., Chen, H.B., Lu, X.Y., Zhou, B.Y.: Identification of MV-generated ROS responsive EST clones in floral buds of Litchi chinensis Sonn. — Plant Cell Rep. 32: 1361–1372, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Livak, K.J., Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. — Methods 25: 402–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Manochai, P., Sruamsiri, P., Wiriya-Alongkorn, W., Naphrom, D., Hegele, M., Bangerth, F.: Year around off season flower induction in longan (Dimocarpus longan Lour.) trees by KClO3 applications: potentials and problems. — Sci. Hort. 104: 379–390, 2005.

    Article  CAS  Google Scholar 

  • Menzel, C.M., Simpson, D.X.: Effect of temperature on growth and flowering of litchi (Litchi chinensis Sonn.) cultivars. — J. hort. Sci. 63: 349–360, 1988.

    CAS  Google Scholar 

  • Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T.: Hydrogen peroxide and nitric oxide as signaling molecules in plants. — J. exp. Bot. 53: 1237–1247, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Nunez-Elisea, R., Davenport, T.L.: Flowering of mango trees in containers as influenced by seasonal temperature and water stress. — Sci. Hort. 58: 57–66, 1994.

    Article  Google Scholar 

  • Sheen, J., Zhou, L., Jang, J.C.: Sugars as signaling molecules. — Curr. Opin. Plant Biol. 2: 410–418, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y.L., Xu, Z.F.: Ectopic overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) gene OsIAA4 in rice induces morphological changes and reduces responsiveness to auxin. — Int. J. mol. Sci. 14: 13645–13656, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Uchida, A., Jagendorf, A.T., Hibino, T., Takabe, T., Takabe, T.: Effect of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. — Plant Sci. 163: 515–523, 2002.

    Article  CAS  Google Scholar 

  • Wu, A.P., Gong, L., Chen, X., Wang, J.X.: Interactions between nitric oxide, gibberellic acid, and phosphorus regulate primary root growth in Arabidopsis. — Biol. Plant. 58: 335–340, 2014.

    Article  CAS  Google Scholar 

  • Zhou, B., Li, N., Zhang, Z., Huang, X., Chen, H., Hu, Z., Pang, X., Liu, W., Lu, Y.: Hydrogen peroxide and nitric oxide promote reproductive growth in Litchi chinensis. — Biol. Plant. 56: 321–329, 2012.

    Article  CAS  Google Scholar 

  • Zhou, J.H., Pesacreta, T.C., Brown, R.C.: RNA isolation without gel formation from oligosaccharide rich onion epidermis. — Plant mol. Biol. Rep. 17: 397–407, 1999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. -Y. Zhou.

Additional information

Acknowledgements: We thank Dr. B.C. Sarker for proofreading. This study was funded by the National Natural Science Foundation (31071760) and the Agricultural Industry Project (CARS-33-08) by the Ministry of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W.W., Chen, H.B., Lu, X.Y. et al. Identification of nitric oxide responsive genes in the floral buds of Litchi chinensis . Biol Plant 59, 115–122 (2015). https://doi.org/10.1007/s10535-014-0466-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0466-x

Additional key words

Navigation