Skip to main content
Log in

Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Plant natural products have been used since ancient times as medicines and herbal remedies. Over the past two decades, the results of population and intervention studies, or assays in animal or cell model systems, have revealed positive health beneficial effects for various classes of phytochemicals, particularly polyphenols. The results of such studies have ignited an interest in being able to manipulate the levels of such bioactive compounds in plants using biotechnological approaches. Although still in its infancy, this technology promises to deliver health benefits to humans and animals through direct consumption of genetically-modified or -enhanced dietary plant materials. We here review the strategies currently being used for engineering two classes of nutraceuticals, the proanthocyanidins and the isoflavones, in transgenic plants. We also provide an overview of recent advances in our understanding of the biosynthesis of these classes of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AHA:

Autoinhibited H+-ATPase isoform

ANR:

Anthocyanidin reductase

ANS:

Anthocyanidin synthase

DFR:

Dihydroflavonol reductase

DMAPP:

Dimethylallyl pyrophosphate

ER:

Estrogen receptor

F3H:

Flavanone 3-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

FLS:

Flavonol synthase

FNS:

Flavone synthase

GPP:

Geranyl pyrophosphate

GSPE:

Grape seed proanthocyanidin extract

GST:

Glutathione S-transferase

2HID:

2-Hydroxyisoflavanone dehydratase

2HIS:

2-Hydroxyisoflavanone synthase

IFS:

Isoflavone synthase

LAR:

Leucoanthocyanidin reductase

LDL:

Low density lipoprotein

MATE:

Multidrug and toxic efflux transporter

2-OG:

2-Oxoglutarate

OMT:

O-methyltransferase

PA:

Proanthocyanidin

PAL:

Phenylalanine ammonia-lyase

PAP:

Production of anthocyanin pigmentation

TT:

Transparent testa

TTG:

Transparent Testa Glabra

UGT:

UDP glycosyltransferase

References

  • Achnine L, Huhman DV, Farag MA et al (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J 41:875–887

    PubMed  CAS  Google Scholar 

  • Adlercreutz H (2002) Phyto-oestrogens and cancer. Lancet Oncol 3:364–373

    PubMed  Google Scholar 

  • Ahmad N, Gupta S, Mukhtar H (2000) Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kB in cancer cells versus normal cells. Arch Biochem Biophys 376:338–346

    PubMed  CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (1998) Identification of a cytochrome P450 cDNA encoding (2S)-flavanone 2-hydroxylase of licorice (Glycyrrhiza echinata L.; Fabaceae) which represents licodione synthase and flavone synthase II. FEBS Lett 431:287–290

    PubMed  CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (1999a) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121:821–828

    PubMed  CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol 137:882–891

    PubMed  CAS  Google Scholar 

  • Akashi T, Fukuchi-Mizutani M, Aoki T et al (1999b) Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones. Plant Cell Physiol 40:1182–1186

    PubMed  CAS  Google Scholar 

  • Akashi T, Sawada Y, Shimada N et al (2003) cDNA cloning and biochemical characterization of S-adenosyl-l-methionine: 2,7,4′-trihydroxyisoflavnone 4′-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway. Plant Cell Physiol 44:103–112

    PubMed  CAS  Google Scholar 

  • Akashi T, VanEtten HD, Sawada Y et al (2006) Catalytic specificity of pea O-methyltransferases suggests gene duplication for (+)-pisatin biosynthesis. Phytochemistry 67:2525–2530

    PubMed  CAS  Google Scholar 

  • Akiyama T, Ishida J, Nakagawa S et al (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595

    PubMed  CAS  Google Scholar 

  • Anzellotti D, Ibrahim RK (2000) Novel flavonol 2-oxoglutarate dependent dioxygenase: affinity purification, characterization, and kinetic properties. Arch Biochem Biophys 382:161–172

    PubMed  CAS  Google Scholar 

  • Bagchi D, Bagchi M, Stohs SJ et al (2000) Free radicals and grape seed proanthocyanidn extract: importance in human health and disease prevention. Toxicol 148:187–197

    CAS  Google Scholar 

  • Baird D, Umbach D (1995) Dietary intervention study to assess estrogenicity of dietary soy, among postmenopausal women. Clin Endocrinol 80:1685–1690

    CAS  Google Scholar 

  • Barron D, Ibrahim R (1996) Isoprenylated flavonoids—a survey. Phytochemistry 43:921–982

    CAS  Google Scholar 

  • Barry TN, McNabb WC (1999) The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br J Nutr 81:263–272

    PubMed  CAS  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B et al (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    PubMed  CAS  Google Scholar 

  • Baxter IR, Young JC, Armstrong G et al (2005) A plasma membrane H+−ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci USA 102:2649–2654

    PubMed  CAS  Google Scholar 

  • Boersma BJ, Barnes S, Kirk M et al (2001) Soy isoflavonoids and cancer—metabolism at the target site. Mut Res 480–481:121–127

    Google Scholar 

  • Bogs J, Downey MO, Harvey JS et al (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139:652–663

    PubMed  CAS  Google Scholar 

  • Bogs J, Ebadi A, McDavid D et al (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279–291

    PubMed  CAS  Google Scholar 

  • Bogs J, Jaffé FW, Takos AM et al (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    PubMed  CAS  Google Scholar 

  • Borevitz J, Xia Y, Blount JW et al (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2393

    PubMed  CAS  Google Scholar 

  • Bowles D, Lim E, Poppenberger B et al (2006) Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57:567–597

    PubMed  CAS  Google Scholar 

  • Byrne PF, McMullen MD, Snook ME et al (1996) Quantitative trait loci and metabolic pathways: Genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc Natl Acad Sci USA 93:8820–8825

    PubMed  CAS  Google Scholar 

  • Clemens S, Barz W (1996) Cytochrome P450-dependent methylenedioxy bridge formation in Cicer arietinum. Phytochemistry 41:457–460

    CAS  Google Scholar 

  • Cornwell T, Cohick W, Raskin I (2004) Dietary phytoestrogens and health. Phytochemistry 65:995–1016

    PubMed  CAS  Google Scholar 

  • Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa (Medicago sativa L.). Plant Physiol 138:2245–2259

    PubMed  CAS  Google Scholar 

  • Deavours BE, Liu C-J, Naoumkina M et al (2006) Functional analysis of members of the isoflavone- and isoflavanone O-methyltransferase enzyme families from the model legume Medicago truncatula. Plant Mol Biol 62:715–733

    PubMed  CAS  Google Scholar 

  • Debeaujon I, Peeters AJM, Leon-Kloosterziel KM et al (2001) The TRANSPARENT TESTA 12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    PubMed  CAS  Google Scholar 

  • Deluc L, Barrieu F, Marchive C et al (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140:499–511

    PubMed  CAS  Google Scholar 

  • Denis L, Morton M, Griffiths K (1999) Diet and its preventive role in prostatic disease. Eur Urol 35:377–387

    PubMed  CAS  Google Scholar 

  • Dewick PM (1993) Isoflavonoids. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman and Hall, London, pp 117–238

    Google Scholar 

  • Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261

    PubMed  CAS  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28

    PubMed  CAS  Google Scholar 

  • Dufresne CJ, Farnworth ER (2001) A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 12:404–421

    PubMed  CAS  Google Scholar 

  • Epifano F, Genovese S, Menghini L et al (2007) Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry 68:939–953

    PubMed  CAS  Google Scholar 

  • Foo LY, Lu Y, Howell AB et al (2000) The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. Phytochemistry 54:173–181

    PubMed  CAS  Google Scholar 

  • Foo LY, Newman R, Waghorn G et al (1996) Proanthocyanidins from Lotus corniculatus. Phytochemistry 41:617–624

    CAS  Google Scholar 

  • Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33:1061–1080

    PubMed  CAS  Google Scholar 

  • Fukui Y, Tanaka Y, Kusumi T et al (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry 63:15–23

    PubMed  CAS  Google Scholar 

  • Furukawa T, Maekawa M, Oki T et al (2007) The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J 49:91–102

    PubMed  CAS  Google Scholar 

  • Gagnon H, Tahara S, Ibrahim RK (1995) Biosynthesis, accumulation and secretion of isoflavonoids during germination and development of white lupin (Lupinus albus L.). J Exp Bot 46:609–616

    CAS  Google Scholar 

  • Gaitan E, Cooksey R, Legan J et al (1995) Antithyroid effects in vivo and in vitro of vitexin: a C-glucosylflavone in millet. J Clin Endocrinol Metabol 80:1144–1147

    CAS  Google Scholar 

  • Haagen Y, Unsöld I, Westrich L, et al (2007) A soluble, magnesium-independent prenyltransferase catalyzes reverse and regular C-prenylations and O-prenylations of aromatic substrates. FEBS Lett 581:2889–2893

    PubMed  CAS  Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    PubMed  CAS  Google Scholar 

  • He XZ, Dixon R (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances the biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12:1689–1702

    PubMed  CAS  Google Scholar 

  • He XZ, Reddy JT, Dixon RA (1998) Stress responses in alfalfa (Medicago sativa L.) XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase. Plant Mol Biol 36:43–54

    PubMed  CAS  Google Scholar 

  • He XZ, Wang XQ, Dixon RA (2006) Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation. J Biol Chem 281:34441–34447

    PubMed  CAS  Google Scholar 

  • Jung W, Yu O, Lau S-M et al (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotech 18:208–212

    CAS  Google Scholar 

  • Kaul TN, Middleton E Jr, Ogra PL (1985) Antiviral effect of flavonoids on human viruses. J Med Virol 15:71–79

    PubMed  CAS  Google Scholar 

  • Kennedy JA, Matthews MA, Waterhouse AL (2000) Changes in grape seed polyphenols during fruit ripening. Phytochemistry 55:77–85

    PubMed  CAS  Google Scholar 

  • Kim BG, Kim SY, Song HS et al (2003) Cloning and expression of the isoflavone synthase gene (IFS-Tp) from Trifolium pratense. Mol Cells 15:301–306

    PubMed  CAS  Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    PubMed  CAS  Google Scholar 

  • Kitaoka M, Kadokawa H, Sugano M et al (1998) Prenylflavonoids: a new class of non-steroidal phytoestrogen. 1. Isolation of 8-isopentenylnaringenin and an initial study on its structure-activity relationship. Planta Med 64:511–515

    PubMed  CAS  Google Scholar 

  • Kuzuyama T, Noel JP, Richard SB (2005) Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435:983–987

    PubMed  CAS  Google Scholar 

  • LaFlamme P, Khouri H, Gulick P et al (1993) Enzymatic prenylation of isoflavones in white lupin. Phytochemistry 34:147–151

    CAS  Google Scholar 

  • Laughton MJ, Evans PJ, Moroney MA et al (1991) Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives: relationship to antioxidant activity and to iron ion-reducing ability. Biochem Pharmacol 42:1673–1681

    PubMed  CAS  Google Scholar 

  • Lee HP, Gourley L, Duffy SW et al (1991) Dietary effects on breast-cancer risk in Singapore. Lancet 337:1197–1200

    PubMed  CAS  Google Scholar 

  • Lee JM, Lee HK, Kim CY et al (2005) Purified high-dose anthocyanoside oligomer administration improves nocturnal vision and clinical symptoms in myopis subjects. Br J Nutr 93:895–800

    PubMed  CAS  Google Scholar 

  • Lees GL (1992) Condensed tannins in some forage legumes: their role in the prevention of ruminant pasture bloat. Basic Life Sci 59:915–934

    PubMed  CAS  Google Scholar 

  • Li H, Flachowsky H, Fischer TC et al (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254

    PubMed  CAS  Google Scholar 

  • Li L, Modolo L, Escamilla-Trevino L et al (2007) Crystal structure of Medicago truncatula UGT85H2—insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J Mol Biol 370:951–963

    PubMed  CAS  Google Scholar 

  • Lim EK, Ashford DA, Hou B, Jackson RG, Bowles DJ (2004) Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol Bioeng 87:623–631

    PubMed  CAS  Google Scholar 

  • Lin R, Li, T (1998) Effects of isoflavones on alcohol pharmacokinetics and alcohol-drinking behavior in rats. Am J Clin Nutr 68:1512S–1515S

    PubMed  CAS  Google Scholar 

  • Liu CJ, Blount JW, Steele CL et al (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci USA 99:14578–14583

    PubMed  CAS  Google Scholar 

  • Liu CJ, Deavours BE, Richard SB et al (2006) Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Plant Cell 18:3656–3669

    PubMed  CAS  Google Scholar 

  • Liu CJ, Dixon RA (2001) Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Plant Cell 13:2643–2658

    PubMed  CAS  Google Scholar 

  • Liu CJ, Huhman DV, Sumner LW et al (2003) Regiospecific hydroxylation of isoflavones by cytochrome P450 81E enzymes from Medicago truncatula. Plant J 36:471–484

    PubMed  CAS  Google Scholar 

  • Liu R, Hu Y, Li J et al (2007) Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway. Metab Eng 9:1–7

    PubMed  Google Scholar 

  • Marinova K, Pourcel L, Weder B et al (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023–2038

    PubMed  CAS  Google Scholar 

  • Martens S, Forkmann G (1999) Cloning and expression of flavone synthease II from Gerbera hybrids. Plant J 20:611–618

    PubMed  CAS  Google Scholar 

  • Martin-Aragon S, Basabe B, Benedi JM et al (1999) In vitro and in vivo antioxidant properties of Vacinnum myrtillus. Pharm Biol 37:109–113

    Article  CAS  Google Scholar 

  • Middleton E, Kandaswami C (1992) Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 43:1167–1179

    PubMed  CAS  Google Scholar 

  • Milligan S, Kalita J, Pocock V et al (2002) Oestrogenic activity of the hop phyto-oestrogen, 8-prenylnaringenin. Reproduction (Cambridge) 123:235–242

    CAS  Google Scholar 

  • Milligan SR, Kalita JC, Heyerick A et al (1999) Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J Clin Endocrinol Metab 84:2249–2252

    PubMed  CAS  Google Scholar 

  • Milligan SR, Kalita JC, Pocock V et al (2000) The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J Clin Endocrinol Metab 85:4912–4915

    PubMed  CAS  Google Scholar 

  • Mizutani M, Tsuda S, Suzuki K et al (2003) Evaluation of post transcriptional gene silencing methods using flower color as the indicator. Plant Cell Physiol 44:s122

    Google Scholar 

  • Modolo L, Blount JW, Achnine L et al (2007) A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Mol Biol 64:499–518

    PubMed  CAS  Google Scholar 

  • Nagashima S, Inagaki R, Kubo A et al (2004) cDNA cloning and expression of isoflavonoid-specific glucosyltransferase from Glycyrrhiza echinata cell-suspension cultures. Planta 218:456–459

    PubMed  CAS  Google Scholar 

  • Nakamura K, Akashi T, Aoki T et al (1999) Induction of isoflavonoid and retrochalcone branches of the flavonoid pathway in cultured Glycyrrhiza echinata cells treated with yeast extract. Biosci Biotechnol Biochem 63:1618–1620

    PubMed  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C et al (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    PubMed  CAS  Google Scholar 

  • Nesi N, Jond C, Debeaujon I et al (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114

    PubMed  CAS  Google Scholar 

  • Offen W, Martinez-Fleites C, Yang M et al (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405

    PubMed  CAS  Google Scholar 

  • Okura A, Arakawa H, Oka H et al (1988) Effect of genistein on topoisomerase activity and on the growth of [VAL 12]Ha-ras-transformed NIH 3T3 cells. Biochem Biophys Res Commun 157:183–189

    PubMed  CAS  Google Scholar 

  • Ono E, Fukuchi-Mizutani M, Nakamura N et al (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Natl Acad Sci USA 103:11075–11080

    PubMed  CAS  Google Scholar 

  • Pang Y, Peel GJ, Wright E et al (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol (in press)

  • Paolocci F, Bovone T, Tosti N et al (2005) Light and an exogenous transcription factor qualitatively and quantitatively affect the biosynthetic pathway of condensed tannins in Lotus corniculatus leaves. J Exp Bot 56:1093–1103

    PubMed  CAS  Google Scholar 

  • Paolocci F, Robbins MP, Madeo L et al (2007) Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. Structure, expression, analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus. Plant Physiol 143:504–516

    PubMed  CAS  Google Scholar 

  • Pojer F, Wemakor E, Kammerer B et al (2003) CloQ, a prenyltransferase involved in clorobiocin biosynthesis. Proc Natl Acad Sci USA 100:2316–2321

    PubMed  CAS  Google Scholar 

  • Potter S, Baum J, Teng H et al (1998) Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 68:1375S–1379S

    PubMed  CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Kerhoas L et al (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–2980

    PubMed  CAS  Google Scholar 

  • Ray H, Yu M, Auser P et al (2003) Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc. Plant Physiol 132:1448–1463

    PubMed  CAS  Google Scholar 

  • Robbins MP, Paolocci F, Hughes J-W et al (2003) Sn, a maize bHLH gene, modulates anthocyanin and condensed tannin pathways in Lotus corniculatus. J Exp Bot 54:239–248

    PubMed  CAS  Google Scholar 

  • Ross JR, Li Y, Lim EK et al (2001) Higher plant glycosyltransferases. Genome Biol 2:3004.1–3004.6

    Google Scholar 

  • Routaboul J-M, Kerhoas L, Debeaujon I et al (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    PubMed  CAS  Google Scholar 

  • Rufer CE, Kulling SE (2006) Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J Agric Food Chem 54:2926–2931

    PubMed  Google Scholar 

  • Sanchez MC, Cao G, Ou B et al (2003) Anthocyanin and proanthocyanidin content in selected white and red wines. Oxygen radical absorbance capacity compairson with nontraditional wines obtained from highbush blueberry. J Agric Food Chem 51:4889–4896

    Google Scholar 

  • Sawada Y, Ayabe S (2005) Multiple mutagenesis of P450 isoflavonoid synthase reveals a key active-site residue. Biochem Biophy Res Commun 330:907–913

    CAS  Google Scholar 

  • Sawada Y, Kinoshita K, Akashi T et al (2002) Key amino acid residues required for aryl migration catalysed by the cytochrome P450 2-hydroxyisoflavanone synthase. Plant J 31:555–564

    PubMed  CAS  Google Scholar 

  • Schopfer CR, Kochs G, Lottspeich F et al (1998) Molecular characterization and functional expression of dihydroxypterocarpan 6a-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosynthesis in soybean (Glycine max L.). FEBS Lett 432:182–186

    PubMed  CAS  Google Scholar 

  • Serafini M, Bugianesi R, Maiani G et al (2003) Plasma antioxidants from chocolate. Nature 424:1013

    PubMed  CAS  Google Scholar 

  • Shao H, He X, Achnine L et al (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17:3141–3154

    PubMed  CAS  Google Scholar 

  • Sharma SB, Dixon RA (2006) Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J 44:62–75

    Google Scholar 

  • Spencer JPE, Schroeter H, Kuhnle G et al (2001) Epicatechin and its in vivo metabolite, 3′-O-methyl epicatechin, protect human fibroblasts from oxidative-stress-induced cell death involving caspase–3 activation. Biochem J 354:493–500

    PubMed  CAS  Google Scholar 

  • Sreevidya V, Srinivasa Rao C, Sullia S et al (2006) Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J Exp Bot 57:1957–1969

    PubMed  CAS  Google Scholar 

  • Steele CL, Gijzen M, Qutob D et al (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367:147–150

    Google Scholar 

  • Strauss L, Santti R, Saarinen N et al (1998) Dietary phytoestrogens and their role in hormonally dependent disease. Toxicol Lett 103:349–354

    Google Scholar 

  • Sweeney MT, Thomson MJ, Pfeil BE et al (2006) Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18:283–294

    PubMed  CAS  Google Scholar 

  • Tahara S, Ibrahim RK (1995) Prenylated isoflavonoids—an update. Phytochemistry 38:1073–1094

    CAS  Google Scholar 

  • Tanaka Y, Tsuda S, Kusumi T (1998) Metabolic engineering to modify flower color. Plant Cell Physiol 39:1119–1126

    CAS  Google Scholar 

  • Tanner GJ, Francki KT, Abrahams S et al (2003) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647–31656

    PubMed  CAS  Google Scholar 

  • Tian L, Dixon RA (2006) Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224:496–507

    PubMed  CAS  Google Scholar 

  • Tikkanen MJ, Adlercreutz H (2000) Dietary soy-derived isoflavone phytoestrogens: could they have a role in coronary heart disease prevention. Biochem Pharmacol 60:1–5

    PubMed  CAS  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    PubMed  CAS  Google Scholar 

  • Turnbull JJ, Nakajima J, Welford RD et al (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis. J Biol Chem 279:1206–1216

    PubMed  CAS  Google Scholar 

  • Vinson JA, Mandarano MA, Shuta DL et al (2002) Beneficial effects of a novel IH636 grape seed proanthocyanidin extract and a niacin-bound chromium in a hamster aterosclerosis model. Mol Cell Biochem 240:99–103

    PubMed  CAS  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC et al (1999) The TRANSPARENT TESTA GLABRA 1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1377–1349

    Google Scholar 

  • Wallace JW, Grisebach H (1973) The in vivo incorporation of a flavanone into C-glycosylflavones. Biochim Biophys Acta 304:837–841

    PubMed  CAS  Google Scholar 

  • Wallace JW, Mabry TJ, Alston RE (1969) On the biogenesis of flavone O-glycosides and C-glycosides in the lemnaceae. Phytochemistry 8:93–99

    CAS  Google Scholar 

  • Welle R, Grisebach H (1988) Induction of phytoalexin synthesis in soybean: enzymatic cyclization of prenylated pterocarpans to glyceollin isomers. Arch Biochem Biophys 263:191–198

    PubMed  CAS  Google Scholar 

  • Welle R, Grisebach H (1991) Properties and solubilization of the prenyltransferase of isoflavonoid phytoalexin biosynthesis in soybean. Phytochemistry 30:479–484

    CAS  Google Scholar 

  • Wiseman H, OReilly JD, Adlercreutz H et al (2000) Isoflavone phytoestrogens consumed in soy decrease F-2-isoprostane concentrations and increase resistance of low-density lipoprotein to oxidation in humans. Am J Clin Nutr 72:395–400

    PubMed  CAS  Google Scholar 

  • Wu Q, Presig CL, VanEtten HD (1997) Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum satium. Plant Mol Biol 35:551–560

    PubMed  CAS  Google Scholar 

  • Xie D, Sharma SR, Paiva NL et al (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    PubMed  CAS  Google Scholar 

  • Xie DY, Sharma SB, Dixon RA (2004) Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Arch Biochem Biophys 422:91–102

    PubMed  CAS  Google Scholar 

  • Xie DY, Sharma B, Wright E et al (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    Article  PubMed  CAS  Google Scholar 

  • Yu O, Jung W, Shi J et al (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–794

    PubMed  CAS  Google Scholar 

  • Yu O, Shi J, Hession AO et al (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763

    PubMed  CAS  Google Scholar 

  • Zhan AQ, Zhu QY, Luk YS et al (1997) Inhibitory effects of jasmine green tea epicatechin isomers on free radical-induced lysis of red blood cells. Life Sci 61:383–394

    Google Scholar 

  • Zhang F, Gonzalez A, Zhao M et al (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    PubMed  CAS  Google Scholar 

  • Zhang S, Chen S, Shen Y et al (2006) Puerarin induces angiogenesis in myocardium of rat with myocardial infarction. Biol Pharm Bull 29:945–950

    PubMed  CAS  Google Scholar 

  • Zubieta C, Dixon RA, Noel JP (2001) Crystal structures of chalcone O-methyltransferase and isoflavone O-methyltransferase reveal the structural basis for substrate specificity in plant O-methyltransferases. Nat Struct Biol 8:271–279

    PubMed  CAS  Google Scholar 

  • Zuker A, Tzfira T, Ben-Meir H et al (2002) Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed 9:33–41

    CAS  Google Scholar 

  • Zuurbier KWM, Fung SY, Scheffer JJC et al (1998) In-vitro prenylation of aromatic intermediates in the biosynthesis of bitter acids in Humulus lupulus. Phytochemistry 49:2315–2322

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gregory Peel for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Dixon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, L., Pang, Y. & Dixon, R.A. Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochem Rev 7, 445–465 (2008). https://doi.org/10.1007/s11101-007-9076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-007-9076-y

Keywords

Navigation