Skip to main content
Log in

The expression of BrMDHAR gene in chloroplasts and mitochondria enhances tolerance to freezing stress in Arabidopsis thaliana

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

In chloroplasts and mitochondria, antioxidant mechanisms include the ascorbate-glutathione cycle, and monodehydroascorbate reductase (MDHAR) is important for regeneration of ascorbate (AsA) from monodehydroascorbate (MDHA). To improve detoxification of reactive oxygen species (ROS), we established a construct of the MDHAR gene from Brassica rapa fused to the targeting signal peptides of Pisum sativum glutathione reductase (GR), which was controlled by a stress-inducible SWPA2 promoter, and introduced this expression system into Arabidopsis thaliana. Transgenic (TG) plants overexpressing BrMDHAR targeted to chloroplasts and mitochondria through signal peptides showed an elevated MDHAR activity and an increased ratio of AsA to dehydroascorbate (DHA) when compared to wild-type (WT) plants under a freezing stress. These led to increased photosynthetic parameters, redox homeostasis, and biomass in TG plants when compared to the WT plants. Our results suggest that the overexpression of the BrMDHAR gene targeted to chloroplasts and mitochondria conferred an enhanced tolerance against the freezing stress, and a stress adaptation of dual-targeted BrMDHAR was better than that of single BrMDHAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbate

BrMHAR :

Brassica rapa monodehydroascorbate reductase gene

DCFH-DA:

6-carboxy-2′,7′-dichlorofluorescin diacetate

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

GPX:

glutathione peroxidase

GR:

glutathione reductase

GSH:

glutathione

MDA:

malondialdehyde

MDHA:

monodehydroascorbate

MDHAR:

monodehydroascorbate reductase

Prx Q:

peroxiredoxin Q

ROS:

reactive oxygen species

SOD:

superoxide dismutase

SWPA2 promoter:

stress-inducible promoter from sweet potato ascorbate peroxidase

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

TG:

transgenic

WT:

wild type

References

  • Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601–639, 1999.

    CAS  PubMed  Google Scholar 

  • Asada, K., Takahashi M.: Production and scavenging of active oxygen in photosynthesis. — In: Kyle, D.J., Osmond, C.B., Arntzen, C.J. (ed.): Photoinhibition. Pp 227–287. Elsevier Science Publishers, Amsterdam 1987.

    Google Scholar 

  • Carrie, C., Giraud, E., Duncan, O., Xu, L., Wang, Y., Huang, S., Clifton, R., Murcha, M., Filipovska, A., Rackham, O., Vrielink, A., Whelan, J.: Conserved and novel functions for Arabidopsis thaliana MIA40 in assembly of proteins in mitochondria and peroxisomes. — J. biol. Chem. 285: 36138–36148, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carrie, C., Giraud, E., Whelan, J.: Protein transport in organelles: dual tatgeting of proteins to mitochondria and chloroplasts. — FEBS J. 276: 1187–1195, 2009a.

    Article  CAS  PubMed  Google Scholar 

  • Carrie, C., Kűhn, K., Murcha, M.W., Duncan, O., Small, I.D., O’Toole, N., Whelan, J.: Approaches to defining dualtargeted proteins in Arabidopsis. — Plant J. 57: 1128–1139, 2009b.

    Article  CAS  PubMed  Google Scholar 

  • Carrie, C., Small, I.: A re-evaluation of dual-targeting of proteins to mitochondria and chloroplasts. — Biochim. biophys. Acta 1833: 253–259, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Carrie, C., Whelan, J.: Widespread dual targeting of proteins in land plants: when, where, how and why. — Plant Signal. Behav. 8(Suppl.): e25034, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chacinska, A., Pfannschmidt, S., Wiedemann, N., Kozjak, V., Sanjuán Szklarz, L.K., Schulze-Specking, A., Truscott, K.N., Guiard, B., Meisinger, C., Pfanner, N.: Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. — EMBO J. 23: 253–259, 2004.

    Article  Google Scholar 

  • Chen, H., Nelson, R.S., Sherwood, J.L.: Enhanced recovery of transformants of Agrobacterium tumefaciens after freezethaw transformation and drug selection. — Biotechniques 16: 664–668, 1994.

    CAS  PubMed  Google Scholar 

  • Chew, O., Rudhe, C., Glaser, E., Whelan, J.: Characterization of the targeting signal of dual-targeted pea glutathione reductase. — Plant mol. Biol. 53: 341–356, 2003a.

    Article  CAS  PubMed  Google Scholar 

  • Chew, O., Whelan, J., Millar, A.H.: Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual-targeting of antioxidant defenses in plants. — J. biol. Chem. 278: 46869–46877, 2003b.

    Article  CAS  PubMed  Google Scholar 

  • Clough, S., Bent, A.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. — Plant J. 16: 735–743, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Creissen, G., Edwards, E.A., Enard, C., Wellburn, A., Mullineaux, P.: Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). — Plant J. 2: 129–131, 1992.

    CAS  PubMed  Google Scholar 

  • Creissen, G., Reynolds, H., Xue, Y., Mullineaux, P.: Simultaneous targeting of pea glutathione reductase and a bacterial fusion protein to chloroplasts and mitochondtria in transgenic tobacco. — Plant J. 8: 167–165, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Dalton, D., Baird, L.M., Langeberg, L., Tauqher, C.Y., Anyan, W.R., Vance, C.P., Sarath, G.: Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules. — Plant Physiol. 102: 481–489, 1993.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 32: 93–101, 1981.

    Article  CAS  Google Scholar 

  • Eubel, H., Heazlewood, J.L., Millar, A.H.: Isolation and subfractionation of plant mitochondria for proteomic analysis. — Methods mol. Biol. 355: 49–62, 2006.

    Google Scholar 

  • Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., Davies, J.M., Dolan. L.: Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. — Nature 422: 442–446, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., Halliwell, B.: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. — Planta 133: 21–25, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Fridovich, I.: Biological effects of the superoxide radical. — Arch. Biochem. Biophys. 247: 1–11, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie, K., Ainsworth, E.: Measurement of reduced, oxidized and total ascorbate content in plants. — Nat. Protocols 2: 871–874, 2007.

    Article  CAS  Google Scholar 

  • Halliwell, B.: Oxidative stress and neurodegeneration: where are we now? — J. Neurochem. 97: 1634–1658, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., Gutteridge, J.M.: Role of free radicals and catalytic metal ions in human disease: an overview. — Methods Enzymol. 186: 1–85, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Harlow, E., Lane, D.: Antibodies: A Laboratory Manual. — Cold Spring Harbor Press, New York 1988.

    Google Scholar 

  • Heath, R., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M., Nakano, Y., Asada, K.: Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. — Plant Cell Physiol. 25: 385–395, 1984.

    CAS  Google Scholar 

  • Ishikawa, T., Takeda, T., Shigeoka, S., Hirayama, O., Mitsunaga, T.: Hydrogen peroxide generation in organelles of Euglena gracilis. — Phytochemistry 33: 1297–1299, 1993.

    Article  CAS  Google Scholar 

  • Jansson, S.: The light-harvesting chlorophyll a/b-binding proteins. — Biochim. biophys. Acta 1184: 1–19, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Jezek, P., Hlavatá, L.: Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. — Int. J. Biochem. Cell Biol. 37: 2478–2503, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez, A., Hernandez, J.A., Del Rio, L.A., Sevilla, F.: Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. — Plant Physiol. 114: 275–284, 1997.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karimi, M., Inze, D., Depicker, A.: GATEWAY vectors for Agrobacterium-mediated plant transformation. — Trends Plant Sci. 7: 193–195, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.Y., Kwon, S.Y., Lee, H.S., Hur, Y., Bang, J.W., Kwak, S.S.: A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. — Plant mol. Biol. 51: 831–838, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Levitan, A., Trebitsh, T., Kiss, V., Pereq, Y., Danqoor, I., Danon, A.: Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. — Proc. nat. Acad. Sci. USA 102: 6225–6230, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtenthaler, H.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Mittova, V., Tal, M., Volokita, M., Guy, M.: Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. — Plant Cell Environ. 26: 845–856, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, M., Kamei, M., Tsuchida, H.: Ascorbate peroxidase and catalase cooperate for protection against hydrogen peroxide generated in potato tubers during low-temperature storage. — Biochem. mol. Biol. Int. 44: 717–726, 1998.

    CAS  PubMed  Google Scholar 

  • Møller, I.M.: Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. — Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 561–591, 2001.

    PubMed  Google Scholar 

  • Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D.T., Lee, O., Kwak, S.S., Kim, D.H., Nam, J., Bahk, J., Hong, J.C., Lee, S.Y., Cho, M.J., Lim, C.O., Yun, D.J.: NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. — Proc. nat. Acad. Sci. USA 100: 358–363, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morgante, C.V., Rodrigues, R.A., Marbach, P.A., Borgonovi, C.M., Moura, D.S., Silva-Filho, M.C.: Conservation of dual-targeted proteins in Arabidopsis and rice points to a similar pattern of gene-family evolution. — Mol. Genet. Genomics 281: 525–538, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Navrot, N., Rouhier, N., Gelhaye, E., Jacquot, J.: Reactive oxygen species generation and antioxidant systems in plant mitochondria. — Physiol. Plant. 129: 185–195, 2007.

    Article  CAS  Google Scholar 

  • Njus, D., Kelley, P.M.: Vitamins C and E donate single hydrogen atoms in vivo. — FEBS Lett. 284: 147–151, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Noctor, G., Foyer, C.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. Plant mol.Biol. 49: 249–279, 1998.

    CAS  PubMed  Google Scholar 

  • Obara, K., Sumi, K., Fukuda, H.: The use of multiple transcription starts causes the dual targeting of Arabidopsis putative monodehydroascorbate reductase to both mitochondria and chloroplasts. — Plant Cell physiol. 43: 697–705, 2002.

    CAS  PubMed  Google Scholar 

  • Prasad, T.K., Anderson, M.D., Martin, B.A., Stewart, C.R..: Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. — Plant Cell 6: 65–74, 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puntarulo, S., Galleano, M., Sanchez, R.A., Boveris, A.: Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. — Biochim. biophys. Acta 1074: 277–283, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Reumann, S., Babujee, L., Ma, C., Wienkoop, S., Siemsen, T., Antonicelli, G.E., Rasche, N., Lűder, F., Weckwerth, W., Jahn, O.: Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. — Plant Cell 19: 3170–3193, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rokov-Plavec, J., Dulic, M., Duchêne, A.M., Weygand-Durasevic, I.: Dual targeting of organellar seryl-tRNA synthetase to maize mitochondria and chloroplasts. — Plant Cell Rep. 27: 1157–1168, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Rudhe, C., Clifton, R., Whelan, J., Glaser, E.: N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency. — J. mol. Biol. 324: 577–585, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Sapir-Mir, M., Mett, A., Belausov, E., Tal-Meshulam, S., Frydman, A., Gidoni, D., Eyal, Y.: Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. — Plant Physiol. 148: 1219–1228, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M., Waner, D.: Guard cell signal transduction. — Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 627–658, 2001a.

    CAS  PubMed  Google Scholar 

  • Schroeder, J.I., Kwak, J.M., Allen, G.J.: Guard cell abscisic acid signalling and engineering drought hardiness in plants. — Nature 410: 327–330, 2001b.

    Article  CAS  PubMed  Google Scholar 

  • Schwacke, R., Fischer, K., Ketelsen, B., Krupinska, K., Krause, K.: Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. — Mol. Genet. Genomics 277: 631–646, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Scrutton, N.S., Berry, A., Perham, R.N.: Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. — Nature 343: 38–43, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Shultz, R., Settlage, S.B., Hanley-Bowdoin, L., Thompson, W.F.: A trichloroacetic acid-acetone method greatly reduces infrared autofluorescence of protein extracts from plant tissue. — Plant mol. Biol. Rep. 23: 405–409, 2005.

    Article  CAS  Google Scholar 

  • Spickett, C.M., Smirnoff, N., Pitt, A.R.: The biosynthesis of erythroascorbate in Saccharomyces cerevisiae and its role as an antioxidant. — Free Radicals Biol. Med. 28: 183–192, 2000.

    Article  CAS  Google Scholar 

  • Sweetlove, L., Heazlewood, J.L., Herald, V., Holtzapffel, R., Day, D.A., Leaver, C.J., Milliar, A.H.: The impact of oxidative stress on Arabidopsis mitochondria. — Plant J. 32: 891–904, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, A.M.: A role for active oxygen species as second messengers in the induction of alternative oxidase gene expression in Petunia hybrida cells. — FEBS Lett. 368: 339–342, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Joseph, J.: Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. — Free Radicals Biol. Med. 27: 612–616, 1999.

    Article  CAS  Google Scholar 

  • Wolff, S.: Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. — Methods Enzymol. 233: 182–189, 1994.

    Article  CAS  Google Scholar 

  • Xu, L., Carrie, C., Law, S.R., Murcha, M.W., Whelan, J.: Acquisition, conservation, and loss of dual-targeted proteins in land plants. — Plant Physiol. 161: 644–662, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo, S.D., Cho, Y.H., Sheen, J.: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. — Nat. Protoc. 2: 1565–1572, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Yoon.

Additional information

Acknowledgements: This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ008060), Rural Development Administration, South Korea. I.S. Kim and H.S. Yoon equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S.Y., Kim, Y.S., Kim, I.S. et al. The expression of BrMDHAR gene in chloroplasts and mitochondria enhances tolerance to freezing stress in Arabidopsis thaliana . Biol Plant 58, 456–468 (2014). https://doi.org/10.1007/s10535-014-0416-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0416-7

Additional key words

Navigation