Skip to main content
Log in

Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A group of nuclear transcription factors, the Whirly proteins, were recently shown to be targeted also to chloroplasts and mitochondria. In order to find out whether other proteins might share this feature, an in silico-based screening of transcription factors from Arabidopsis and rice was carried out with the aim of identifying putative N-terminal chloroplast and mitochondrial targeting sequences. For this, the individual predictions of several independent programs were combined to a consensus prediction using a naïve Bayes method. This consensus prediction shows a higher specificity at a given sensitivity value than each of the single programs. In both species, transcription factors from a variety of protein families that possess putative N-terminal plastid or mitochondrial target peptides as well as nuclear localization sequences, were found. A search for homologues within members of the AP2/EREBP protein family revealed that target peptide-containing proteins are conserved among monocotyledonous and dicotyledonous species. Fusion of one of these proteins to GFP revealed, indeed, a dual targeting activity of this protein. We propose that dually targeted transcription factors might be involved in the communication between the nucleus and the organelles in plant cells. We further discuss how recent results on the physical interaction between the organelles and the nucleus could have significance for the regulation of the localization of these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

At:

Arabidopsis thaliana

cTP:

Chloroplast targeting peptide

GFP:

Green fluorescent protein

mTP:

Mitochondrial targeting peptide

NLS:

Nuclear localization sequence

Os:

Oryza sativa

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36:652–663

    Article  PubMed  CAS  Google Scholar 

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    Article  PubMed  CAS  Google Scholar 

  • Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R, Schulz I, Reuter G, Aalen RB (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res 29:4319–4333

    Article  PubMed  CAS  Google Scholar 

  • Beck CF (2005) Signalling pathways from the chloroplast to the nucleus. Planta 222:743–756

    Article  PubMed  CAS  Google Scholar 

  • Bodén M, Hawkins J (2005) Prediction of subcellular localization using sequence-biased recurrent networks. Bioinformatics 21:2279–2286

    Article  PubMed  CAS  Google Scholar 

  • Boguta M, Hunter LA, Shen W-C, Gillman EC, Martin NC, Hopper AK (1994) Subcellular locations of MOD5 proteins: mapping of sequences sufficient for targeting to mitochondria and demonstration that mitochondrial and nuclear isoforms comingle in the cytosol. Mol Cell Biol 14:2298–2306

    PubMed  CAS  Google Scholar 

  • Bomsztyk K, Denisenko O, Ostrowski J (2004) hnRNP K: one protein multiple processes. BioEssays 26:629–638

    Article  PubMed  CAS  Google Scholar 

  • Boyle B, Brisson N (2001) Repression of the defense gene PR-10a by the single-stranded DNA binding protein SEBF. Plant Cell 13:2525–2537

    Article  PubMed  CAS  Google Scholar 

  • Bruce BD (2000) Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10:440–447

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Tao Y, Lim J, Shaw A, Chory J (2005) Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear localization signals. Curr Biol 15:637–642

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Harada JJ, Goldberg RB, Fischer RL (2004) An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene. Proc Natl Acad Sci USA 101:7481–7486

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  PubMed  CAS  Google Scholar 

  • Cokol M, Nair R, Rost B (2000) Finding nuclear localization signals. EMBO Rep 1:411–415

    Article  PubMed  CAS  Google Scholar 

  • Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS, Kroemer G, Slack RS (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158:507–517

    Article  PubMed  CAS  Google Scholar 

  • Curaba J, Herzog M, Vachon G (2003) GeBP, the first member of a new gene family in Arabidopsis, encoded a nuclear protein with DNA-binding activity and is regulated by KNAT1. Plant J 33:305–317

    Article  PubMed  CAS  Google Scholar 

  • Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis Gene Regulatory Information Server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4:25

    Article  PubMed  Google Scholar 

  • Desveaux D, Després C, Joyeux A, Subramaniam R, Brisson N (2000) PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell 12:1477–1489

    Article  PubMed  CAS  Google Scholar 

  • Desveaux D, Subramaniam R, Despres C, Mess JN, Levesque C, Fobert PR, Dangl JL, Brisson N (2004) A "Whirly" transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6:229–240

    Article  PubMed  CAS  Google Scholar 

  • Ellis SR, Hopper AK, Martin NC (1989) Amino-terminal extension generated from an upstream AUG codon increases the efficiency of mitochondrial import of yeast N2,N2-dimethylguanosine-specific tRNA methyltransferases. Mol Cell Biol 9:1611–1620

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Guda C, Fahy E, Subramaniam S (2004) MITOPRED: a genome-scale method for prediction of nuclear-encoded mitochondrial proteins. Bioinformatics 20:1785–1794

    Article  PubMed  CAS  Google Scholar 

  • Hao D, Yamasaki K, Sarai A, Ohme-Takagi M (2002) Determinants in the sequence specific binding of two plant transcription factors, DBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry 41:4202–4208

    Article  PubMed  CAS  Google Scholar 

  • Harrison DJ, Langdale JA (2006) A step by step guide to phylogeny reconstruction. Plant J 45:561–572

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Tonti-Filippini J, Verboom RE, Millar H (2005) Combining experimental and predicted datasets for determination of the subcellular location of proteins in Arabidopsis. Plant Physiol 139:598–609

    Article  PubMed  CAS  Google Scholar 

  • Heidstra R, Welch D, Sheres B (2004) Mosaic analyses using marked activation and deletion clones to dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev 18:1964–1969

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Nakai K (2006) Protein subcellular localization prediction with WoLF PSORT. In: Proceedings of the 4th annual Asia Pacific bioinformatics conference APBC06, Taipei, Taiwan, pp 39–48

  • Karniely S, Pines O (2005) Single translation—dual destination: mechanisms of dual protein targeting in eukaryotes. EMBO Rep 6:420–425

    Article  PubMed  CAS  Google Scholar 

  • Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Adam E, Schäfer E, Nagy F (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14:1541–1555

    Article  PubMed  CAS  Google Scholar 

  • Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH (2005) High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP–ORF-fusions. Plant J 41:162–174

    Article  PubMed  CAS  Google Scholar 

  • Krause K, Kilbienski I, Mulisch M, Rödiger A, Schäfer A, Krupinska K (2005) DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett 579:3707–3712

    Article  PubMed  CAS  Google Scholar 

  • Krupinska K (2005) Fate and activities of plastids during leaf senescence. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Heidelberg, pp 433–449

    Google Scholar 

  • Kwok EY, Hanson MR (2004) Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep 23:188–195

    Article  PubMed  CAS  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants. Functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Orsi R, Patrucco E, Pancaldi SRC (1997) Multiple transcription start sites of the carrot dihydrofolate reductase-thymidylate synthase gene, and sub-cellular localization of the bifunctional protein. Plant Mol Biol 33:709–722

    Article  PubMed  CAS  Google Scholar 

  • Magnani E, Sjölander K, Hake S (2004) From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16:2265–2277

    Article  PubMed  CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed  CAS  Google Scholar 

  • Negrutiu I, Shillito RD, Potrykus I, Biasini G, Sala F (1987) Hybrid gene in the analysis of transformation conditions. I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol Biol 8:363–373

    Article  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak B, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    Article  PubMed  CAS  Google Scholar 

  • Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ (2006) PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genomics Proteomics Bioinformatics 4:48–55

    Article  PubMed  CAS  Google Scholar 

  • Raynaud C, Sozzani R, Glab N, Domenichini S, Perennes C, Cella R, Kondorosi E, Bergouinoux C (2006) Two cell-cycle regulated SET-domain proteins interact with proliferating cell nuclear antigen (PCNA) in Arabidopsis. Plant J 47:395–407

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Dietzmann A, Biehl A, Kurth J, Laloi C, Apel K, Salamini F, Leister D (2003) Covariations in the nuclear chloroplast transcriptome reveal a regulatory master-switch. EMBO Rep 4:491–498

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Ruchalski K, Mao H, Li Z, Wang Z, Gillers S, Wang Y, Mosser DD, Gabai V, Schwartz JH, Borkan SC (2006) Distinct hsp70 domains mediate apoptosis-inducing factor release and nuclear accumulation. J Biol Chem 281:7873–7880

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Schein AI, Kissinger JC, Ungar LH (2001) Chloroplast transit peptide prediction: a peek behind the black box. Nucleic Acids Res 29:82

    Article  Google Scholar 

  • Schneider M, Bairoch A, Wu CH, Apweiler R (2005) Plant protein annotation in the UniProt Knowledgebase. Plant Physiol 138:59–66

    Article  PubMed  CAS  Google Scholar 

  • Selga T, Selga M, Pavila V (2005) Death of mitochondria during programmed cell death of leaf mesophyll cells. Cell Biol Int 29:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Shigyo M, Hasabe M, Ito M (2006) Molecular evolution of the AP2 subfamily. Gene 366:256–265

    Article  PubMed  CAS  Google Scholar 

  • Silva-Filho MC (2003) One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations. Curr Opin Plant Biol 6:589–595

    Article  PubMed  CAS  Google Scholar 

  • Slupphaug G, Markussen F-H, Olsen LC, Aasland R, Aarsaether N, Bakke O, Krokan HE, Helland DE (1993) Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene. Nucleic Acids Res 21:2579–2584

    Article  PubMed  CAS  Google Scholar 

  • Small I, Wintz H, Akashi K, Mireau M (1998) Two birds with one stone: genes that encode products targeted to two or more compartments. Plant Mol Biol 38:265–277

    Article  PubMed  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Napoli CA, Selinger DA, Pandey R, Cone KC, Chandler VL, Kaeppler HF, Kaeppler SM (2003) Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol 132:907–925

    Article  PubMed  CAS  Google Scholar 

  • Strand A (2004) Plastid-to-nucleus signalling. Curr Opin Plant Biol 7:621–625

    Article  PubMed  CAS  Google Scholar 

  • Stribinskis V, Heyman H-C, Ellis SR, Steffen MC, Martin NC (2005) Rpm2p, a component of yeast mitochondrial RNaseP, acts as a transcriptional activator in the nucleus. Mol Cell Biol 25:6546–6558

    Article  PubMed  CAS  Google Scholar 

  • Sunderland PA, West CE, Waterworth WM, Bray CM (2004) Choice of a start codon in a single transcript determines DNA ligase 1 isoform production and intracellular targeting in Arabidopsis thaliana. Biochem Soc Trans 32:614–616

    Article  PubMed  CAS  Google Scholar 

  • Sunderland PA, West CE, Waterworth WM, Bray CM (2006) An evolutionarily conserved translation initiation mechanism regulates nuclear or mitochondrial targeting of DNA ligase 1 in Arabidopsis thaliana. Plant J 47:356–367

    Article  PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewiak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wagner R, Pfannschmidt T (2006) Eukaryotic transcription factors in plastids—bioinformatic assessment and implications for the evolution of gene expression machineries in plants. Gene 381:62–70

    Article  PubMed  CAS  Google Scholar 

  • Weigel D (1995) The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell 7:388–389

    Article  PubMed  CAS  Google Scholar 

  • Wessler SR (2005) Homing into the origin of the AP2 DNA binding domain. Trends Plant Sci 10:54–56

    Article  PubMed  CAS  Google Scholar 

  • Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Fröhlich K-U, Manns J, Candé C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    Article  PubMed  CAS  Google Scholar 

  • Wolfe CL, Lou Y-C, Hopper AK, Martin NC (1994) Interplay of heterogenous transcriptional start sites and translational selection of AUGs dictate the production of mitochondrial and cytosolic/nuclear tRNA nucleotidyltransferase from the same gene in yeast. J Biol Chem 269:13361–13366

    PubMed  CAS  Google Scholar 

  • Wolfe CL, Hopper AK, Martin NC (1996) Mechanisms leading to and the consequences of altering the normal distribution of ATP (CTP):tRNA nucleotidyltransferase in yeast. J Biol Chem 271:4679–4686

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59:191–203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Mario Brosch and Isabell Kilbienski (University of Kiel) for stimulating discussions. Prof. Martin Huelskamp (University of Cologne) is thanked for providing the Arabidopsis cell culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Krause.

Additional information

Communicated by B. F. Lang.

Electronic supplementary material

Below is the link to the electronic supplementary meterial

438_2007_214_MOESM1_ESM.xls

S1: List of plastid proteins used as test set for chloroplast localization. The gene identifier, organism and function of each protein are given. (64 KB)

438_2007_214_MOESM2_ESM.xls

S2: List of mitochondrial proteins used as test set for mitochondrial localization. The gene identifier, organism and function of each protein are given. (35 KB)

438_2007_214_MOESM3_ESM.xls

S3: List of non-plastid and non-mitochondrial proteins used as control test set for non-organellar localization. The gene identifier, organism and function of each protein are given. (93 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwacke, R., Fischer, K., Ketelsen, B. et al. Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genomics 277, 631–646 (2007). https://doi.org/10.1007/s00438-007-0214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0214-4

Keywords

Navigation