Skip to main content
Log in

Cell death induced by ozone stress in the leaves of Populus deltoides × maximowiczii

  • Published:
Biologia Plantarum

Abstract

When exposed to an acute ozone stress, cell death occurred in leaves of the O3 sensitive Populus deltoides × maximowiczii clone Eridano. After treatment (5 h fumigation and 24 h recovery), the damaged areas covered more than 50 % of the leaf surface. At cellular level, these lesions were preceded by some apoptotic hallmarks and by biochemical and physiological alterations evoked by the apoplastic O3 dissociation. The cell death pattern was highly localized and involved an increase of membrane permeability, externalization of phosphatidylserine, DNA fragmentation, callose accumulation, polyphenol production, and a biphasic oxidative burst accompanied by NO overproduction. These results indicate a process of programmed cell death that could have the biological significance of limiting the spreading the oxidative burst triggered by ozone dissociation in apoplastic environment. Moreover, materials derived from cell dismantling could be remobilized toward developing structures which can conclude their ontogenetic program after the stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CTAB:

cetyltrimethyl ammonium bromide

DAF-2DA:

4,5-diaminofluorescein diacetate

FITC:

fluoresceine isothiocyanate

H2DCFDA:

2′,7′-dichlorodihydrofluorescein diacetate

HR:

hypersensitive response

MES:

2-(N-morpholino) ethanesulfonic acid

PAL:

phenylalanineammonia lyase

PBS:

phosphate-buffered saline

PCD:

programmed cell death

PI:

propidium iodide

PS:

phosphatidylserine

ROS:

reactive oxygen species

TUNEL:

terminal deoxynucleotidyl transferase

(TdT):

mediated dUTPnick-end labeling

References

  • Ahlfors, R., Brosché, M., Kangasjärvi, J.: Ozone and nitric oxide interaction in Arabidopsis thaliana. A role for ethylene? — Plant Signal. Behavior 4: 878–879, 2009a.

    Article  CAS  Google Scholar 

  • Ahlfors, R., Brosché, M., Kollist, H., Kangasjärvi, J.: Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. — Plant J. 58: 1–12, 2009b.

    Article  PubMed  CAS  Google Scholar 

  • Bartoli, G., Forino, L.M.C., Tagliasacchi, A.M., Bernardi, R., Durante, M.: Ozone damage and tolerance in leaves of two poplar genotypes. — Caryologia 63: 422–434, 2010.

    Google Scholar 

  • Bartoli, G., Forino, L.M.C., Tagliasacchi, A.M., Bernardi, R., Durante, M.: Ozone induces a HR-like response in the O3 sensitive Populus deltoides × maximowiczii Eridano clone. — In: Proceedings of the 1st Annual Congress of Italian Society of Plant Biollogy. Pp. 52. SIBV, Verona 2009.

    Google Scholar 

  • Bernardi, R., Nali, C., Ginestri, P., Pugliesi, C., Lorenzini, G., Durante, M.: Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after exposure to ozone. — Biol. Plant. 48: 41–48, 2004.

    Article  CAS  Google Scholar 

  • Bethke, P.C., Lonsdale, J.E., Fath, A., Jones, R.L.: Hormonally regulated programmed cell death in barley aleurone cells. — Plant Cell 11: 1033–1045, 1999.

    PubMed  CAS  Google Scholar 

  • Bird, A.P., Southern, E.M.: Use of restriction enzymes to study eukaryotic DNA methylation: I The methylation pattern in ribosomal DNA from Xenopus. — J. mol. Biol. 118: 27–47, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, G.M., Sun, X., Fearnhead, H., Macfarlane, M., Brown, D.J., Snowden, R.T., Dinsdale, D.: Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. — J. Immunol. 153: 507–16, 1994.

    PubMed  CAS  Google Scholar 

  • Delledonne, M., Zeier, J., Marocco, A., Lamb, C.: Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. — Proc. nat. Acad. Sci. USA 98: 13454–13459, 2001.

    Article  PubMed  CAS  Google Scholar 

  • De Pinto, M.C., Tommasi, F., De Gara, L.: Changes in the antioxidant systems as part of the signalling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco BY-2 cells. — Plant Physiol. 130: 698–708, 2002.

    Article  PubMed  Google Scholar 

  • Dizengremel, P., Le Thiec, D., Hasenfratz-Sauder, M.P., Vaultier, M.N., Bagard, M., Jolivet, Y.: Metabolicdependent changes in plant cell redox power after ozone exposure. — Plant Biol. 11: 35–42, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Diara, C., Castagna, A., Baldan, B., Mensuali Sodi, A., Sahr, T., Langebartels, C., Sebastiani, L., Ranieri, A.: Differences in the kinetics and scale of signaling molecule production modulate the ozone sensitivity of hybrid poplar clones: the roles of H2O2, ethylene and salicylic acid. — New Phytol. 168: 351–364, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Di Baccio, D., Castagna, A., Paoletti, E., Sebastiani, L., Ranieri, A.: Could the differences in O3 sensitivity between two poplar clones be related to a difference in antioxidant defence and secondary metabolic response to O3 influx? — Tree Physiol. 28: 1761–1772, 2008.

    Article  PubMed  Google Scholar 

  • Di Baccio, D., Ederli, L., Marabottini, R., Badiani, M., Francini, A., Nali, C., Antonelli, M., Santangelo, E., Sebastiani, L., Pasqualini, S.: Similar foliar lesions but opposite hormonal patterns in a tomato mutant impaired in ethylene perception and its near isogenic wild type challenged with ozone. — Environ. exp. Bot. 75: 286–297, 2012.

    Article  Google Scholar 

  • Doyle, J.J., Doyle, J.L.: Isolation of plant DNA from fresh tissue. — Focus 12: 13–15, 1990.

    Google Scholar 

  • Draper, J.: Salicylate, superoxide synthesis and cell suicide in plant defence. — Trends Plant Sci. 2: 162–165, 1997.

    Article  Google Scholar 

  • Durante, M., Geri, C., Bonatti, S., Parenti, R.: Non-random alkylation of DNA sequences induced in vivo by chemical mutagens. — Carcinogenesis 10: 1357–1361, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T., Xing, T.: Heat shock induces programmed cell death in wheat lesions. — Biol. Plant. 48: 389–394, 2004.

    Article  CAS  Google Scholar 

  • Faoro, F., Iriti, M.: Cell death behind invisible symptoms: early diagnosis of ozone injury. — Biol. Plant. 49: 585–592, 2005.

    Article  Google Scholar 

  • Faoro, F., Iriti M.: Plant cell death and cellular alterations induced by ozone: key studies in Mediterranean conditions. — Environ. Pollut. 157: 1470–1477, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Fincher, G.B., Stone, B.A.: Metabolism of noncellulosic polysaccharides. — In: Loewus, F.A. (ed.): Encyclopedia of Plant Phisyology, New Series. Vol. 13. Pp. 68–132. Springer-Verlag, Berlin 1981.

    Google Scholar 

  • Fiscus, E.L., Booker, F.L., Burkey, K.O.: Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. — Plant Cell Environ. 28: 997–1011, 2005.

    Article  CAS  Google Scholar 

  • Gadjev, I., Stone, J.M., Gechev, T.S.: Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. — Int. Rev. cell. mol. Biol. 270: 87–144, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Garces, H., Durzan, D., Pedroso, M.C.: Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana. — Ann. Bot. 87: 567–574, 2001.

    Article  CAS  Google Scholar 

  • Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I., Laloi, C.: Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. — Bioassays 28: 1091–1101, 2006.

    Article  CAS  Google Scholar 

  • Gilchrist, D.G.: Programmed cell death in plant disease: the purpose and promise of cellular suicide. — Annu. Rev. Phytopathol. 36: 393–414, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Gravano, E., Giulietti, V., Desotgiu, R., Bussotti, F., Grossoni, P., Gerosa, G., Tani, C.: Foliar response of an Ailanthus altissima clone in two sites with different levels of ozonepollution. — Environ. Pollut. 121: 137–146, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T.: Programmed cell death: a way of life for plants. — Proc. nat. Acad. Sci. USA 93: 12094–12097, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena, A., Greenwood, J.S., Dengler, N.: Programmed cell death remodels lace plant leaf shape during development. — Plant Cell 16: 60–73, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Günthardt-Goerg, M.S., Vollenweider, P.: Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. — Environ. Pollut. 147: 467–488, 2007.

    Article  PubMed  Google Scholar 

  • Guo, J., Li, X.F., Qi, D.M., Chen, S.Y., Li, Z.Q., Nijs, I., Li, Y.G., Liu, G.S.: Effects of ozone on wild type and transgenic tobacco. — Biol. Plant. 53: 670–676, 2009.

    Article  CAS  Google Scholar 

  • Havel, L., Durzan, D.J.: Apoptosis in plants. — Bot. Acta 109: 268–277, 1996.

    CAS  Google Scholar 

  • Havel, L., Durzan, D.J.: Programmed cell death in plants development. — In: Strnad, M., Peč, P., Beck, E. (ed.): Advances in Regulation of Plant Growth and Development. Pp 203–212. Peres, Prague 1999.

    Google Scholar 

  • Heath, R.L.: Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? — Environ. Pollut. 155: 453–463, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Jensen W.A. (ed): Botanical Histochemistry. — W. Freeman & Co., San Francisco 1962.

    Google Scholar 

  • Kangasjärvi, J., Jaspers, P., Kollist, H.: Signalling and cell death in ozone exposed plants. — Plant Cell Environ. 28: 1021–1036, 2005.

    Article  Google Scholar 

  • Koch, J.R., Creelman, R.A., Eshita, S.M., Seskar, M., Mullet, J.E., Davis, K.R.: Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. the role of programmed cell death in lesion formation. — Plant Physiol. 123: 487–496, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kołodziejek, I., Kozioł-Lipińska, J., Wałeza, M., Korczyński, J., Mostowska, A.: Aspects of programmed cell death during early senescence of barley leaves: possible role of nitric oxide. — Protoplasma 232: 97–108, 2007.

    Article  PubMed  Google Scholar 

  • Laloi, C., Apel, K., Danon, A.: Reactive oxygen signalling: the latest news. — Curr. Opin. Plant Biol. 7: 323–328, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E.: Controlled cell death, plant survival and development. — Nat. Rev. mol. cell. Biol. 5: 305–315, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C., Dixon, R. A.: The oxidative burst in plant disease resistance. — Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 251–275, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Lenochová, Z., Soukup, A., Votrubová, O.: Aerenchyma formation in maize roots. — Biol. Plant. 53: 263–270, 2009.

    Article  Google Scholar 

  • Lei, M., Podell, E.R., Baumann, P., Cech, T.R.: DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. — Nature 426:198–203, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ljubeŝić, N., Britvec, M.: Tropospheric ozone-induced structural changes in leaf mesophyll cell walls in grapevine plants. — Biologia 61: 85–90, 2006.

    Article  Google Scholar 

  • Lombardi, L., Ceccarelli, N., Picciarelli, P., Lorenzi, R.: DNA degradation during programmed cell death of Phaseolus coccineus. — Plant Physiol. Biochem. 45: 221–227, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam, R., Shah, N., Scrymgeour, A., Fedorof, N.: Temporal evolution of the Arabidopsis oxidative stress response. — Plant Mol. Biol. 57: 709–730, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Lam, E.: Pathogen-induced programmed cell death in tobacco. — Plant mol. Biol. 34: 209–221, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Moldau, H., Padu, E., Bichele, I.: Quantification of ozone decay and requirement for ascorbate in Phaseolus vulgaris L. mesophyll cell walls. — Phyton 37: 175–180, 1997.

    CAS  Google Scholar 

  • Nali, C., Guidi, L., Filippi, F., Soldatini, G.F., Lorenzini, G.: Photosynthesis of two poplar clones contrasting in O3 sensitivity. — Trees 12: 196–200, 1998.

    Google Scholar 

  • Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T.: Hydrogen peroxide and nitric oxide as signalling molecules in plants. — J. exp. Bot. 53: 1237–1247, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nikula, S., Percy, K., Oksanen, E., Holopainen, T., Manninen, S.: Effects of elevated ozone on growth and foliar traits of European and hybrid aspen. — Boreal Environ. Res. 14: 29–47, 2009.

    CAS  Google Scholar 

  • O’Brien, T., Mc Cully, M.E. (ed.): The Study of Plant Structure. Principles and Selected Methods. — Termacarphi, Melbourne 1981.

    Google Scholar 

  • O’Brien, I.E.W., Reutelingsperger, C.P., Holdaway, K.M.: The use of Annexin V and TUNEL to monitor the progression of apoptosis in plants. — Cytometry 29: 28–33, 1997.

    Article  PubMed  Google Scholar 

  • O’Brien, I.E.W., Baguley, B.C., Murray B.G., Morris B.A.M., Ferguson I.B.: Early stages of the apoptotic pathway in plant cells are reversible. — Plant J. 13: 803–814, 1998.

    Article  Google Scholar 

  • Overmyer, K., Brosché, M., Pellinen, R., Kuittinen, T., Tuominen, H., Ahlfors, R., Keinänen, M., Saarma, M., Scheel, D., Kangasjärvi, J.: Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death 1 mutant. — Plant Physiol. 137: 1092–1104, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Pääkkönen, E., Holopainen, T., Karenlampi H.: Variation in ozone sensitivity among clones of Betula pendula and Betula pubescens. — Environ. Pollut. 95: 37–44, 1997.

    Article  PubMed  Google Scholar 

  • Pachauri, R.K., Reisinger, A. (ed): Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. — IPCC, Geneva 2007.

    Google Scholar 

  • Paolacci, A.R., D’Ovidio, R., Marabottini, R., Nali, C., Lorenzini, G., Abenavoli, M.R., Badiani, M.: Ozone induces a differential accumulation of phenyalanine ammonia-lyase, chalcone synthase and chalcone isomerase RNA transcripts in sensitive and resistant bean cultivars. — Aust. J. Plant Physiol. 28: 425–428, 2001.

    CAS  Google Scholar 

  • Pasqualini, S., Piccioni, C., Reale, L., Ederli, L., Della Torre, G., Ferranti, F.: Ozone-induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. — Plant Physiol. 133: 1122–1134, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Pedroso, M.C., Magalhaes, J.R., Durzan, D.J.: A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm foliar tissues. — J. exp. Bot. 51: 1027–1036, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pennell, R.I., Lamb C.: Programmed cell death in plants. — Plant Cell 9:1157–1168, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Qiao, W., Fan, L.M.: Nitric oxide signalling in plant responses to abiotic stresses. — J. integr. Plant Biol. 50: 1238–1246, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Richet, N., Afif, D., Tozo, K., Pollet, B., Maillard, P., Huber, F., Priault, P., Banvoy, J., Gross, P., Dizengremel, P., Lapierre, C., Perré, P., Cabané, M.: Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula × alba). — J. exp. Bot. 63: 4291–4301, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Rizzo, M., Bernardi, R., Salvini, M., Nali, C., Lorenzini, G., Durante, M.: Identification of differentially expressed genes induced by ozone stress in sensitive and tolerant poplar hybrids. — J. Plant Physiol. 164: 945–949, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Schraudner, M., Moeder, W., Wiese, C., Van Camp, W., Inzè, D., Langebartels, C., Sandermann, H. Jr.: Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. — Plant J. 16: 235–245, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Singer, J., Roberts-Ems, J., Riggs, A.D.: Methylation of mouse liver DNA studied by means of the restriction enzymes msp I and hpa II. — Science 203: 1019–1021, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Strohm, M., Eiblmeier, M., Langebartels, C., Jouanin, L., Polle, A., Sandermann, H., Rennenberg, H.: Responses of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. — J. exp. Bot. 50: 365–374, 1999.

    Article  CAS  Google Scholar 

  • Tamaoki, M.: The role of phytohormone signaling in ozoneinduced cell death in plants. — Plant Signal. Behavior 3: 166–174, 2008.

    Article  Google Scholar 

  • Taylor, G.: Populus: Arabidopsis for forestry. Do we need a model tree? — Ann. Bot. 90: 681–689, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Vingarzan, R.: A review of surface O3 background levels and trends. — Atmos. Environ. 38: 3431–3442, 2004.

    Article  CAS  Google Scholar 

  • Vollenweider, P., Ottiger, M., Günthardt-Goerg, M.S.: Validation of leaf ozone symptoms in natural vegetation using microscopical methods. — Environ. Pollut. 124: 101–118, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Lin, J.S., Wang, G.X.: Role of calcium in nitric oxide-induced programmed cell death in tobacco protoplasts. — Biol. Plant. 54: 471–476, 2010.

    Article  CAS  Google Scholar 

  • Wohlgemuth, H., Mittelstrass, K., Kschieschan, S., Bender, J., Weigel, H.J., Overmyer, K., Kangasjärvi, J., Sandermann, H., Langebartels, C.: Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. — Plant Cell Environ. 25: 717–726, 2002.

    Article  CAS  Google Scholar 

  • Xie, Q.E., Liu, I.D., Yu, S.X., Wang, R.F., Fan, Z.X., Wang, Y.G., Shen, F.F.: Detection of DNA ladder during cotyledon senescence in cotton. — Biol. Plant. 52: 654–659, 2008.

    Article  CAS  Google Scholar 

  • Xu, C.J., Chen, K.S., Ferguson, I.B.: Programmed cell death feature in apple suspension cells under low oxygen culture. — J. Zhejiang Univ. Sci. 5: 137–143, 2004.

    Article  PubMed  Google Scholar 

  • Xu, P., Roossinck, M. J.: Cucumber mosaic virus D satellite RNA-induced programmed cell death in tomato. — Plant Cell 12:1079–92, 2000.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bartoli.

Additional information

Acknowledgements: The authors thank Prof. A. Ranieri and Dr. A. Castagna (Department of Agriculture, Food and Environment, University of Pisa) for ozone fumigation apparatus providing and for the assistance during the fumigation treatment of poplar rooted-cuttings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartoli, G., Forino, L.M.C., Tagliasacchi, A.M. et al. Cell death induced by ozone stress in the leaves of Populus deltoides × maximowiczii . Biol Plant 57, 514–524 (2013). https://doi.org/10.1007/s10535-013-0315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-013-0315-3

Additional key words

Navigation