Skip to main content
Log in

Protein changes during programmed cell death in tobacco

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Programmed cell death (PCD) was induced by the Yariv reagent in Nicotiana tabacum cv. Bright Yellow-2 cell suspension. The analyses of proteins extracts by 2-D electrophoresis clearly show massive protein degradation which was mainly due to cysteine protease activity. In contrast, some proteins remained unchanged up to 72 h after PCD induction. Peptide mass fingerprints of these proteins, obtained by MALDI-TOF, identified calreticulin, heat shock protein (HSP) 60, HSP70, malate dehydrogenase and mitochondrial ATP synthase β-subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AGPs:

arabinogalactan-proteins

ATPase:

ATP synthase β-subunit

BY-2:

Bright Yellow-2

CRT:

calreticulin

2;4-D:

2;4-dichlorophenoxyacetic acid

2-DE:

2-dimensional electrophoresis

IEF:

isoelectric focusing

HSP:

heat shock protein

MALDI-TOF:

matrix assisted laser desorption/ionization-time of fight

MS:

mass spectrometry

MDH:

malatedehydrogenase

MS medium:

Murashige and Skoog medium

PCD:

programmed cell death

TBP:

tributylphosphine

TCA:

trichloroacetic acid

References

  • Beers, E.P., Freeman, T.B.: Proteinase activity during tracheary element differentiation in Zinnia mesophyll cultures. — Plant Physiol. 113: 873–880, 1997.

    CAS  PubMed  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, P.K., Mustafi, S.B., Ganguly, S., Chatterjee, M., Raha, S.: Resveratrol induces apoptosis in K562 (chronic myelogenous leukemia) cells by targeting a key survival protein, heat shock protein 70. — Cancer Sci. 99: 1109–1116, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Chaves, I., Regalado, A.P., Chen, M., Ricardo, C.P., Showalter, A.M.: Programmed cell death induced by (b-D-galactosyl)3 Yariv reagent in Nicotiana tabacum BY-2 suspensioncultured cells. — Physiol. Plant. 116: 548–553, 2002.

    Article  CAS  Google Scholar 

  • Chen, H.-M., Zhou, J., Dai, Y.-R.: Cleavage of lamin-like proteins in vivo and in vitro apoptosis of tobacco protoplasts induced by heat shock. — FEBS Lett. 480: 165–168, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Cronjé, M.J., Weir, I.E., Bornman, L.: Salicylic acid-mediated potentiation of Hsp70 induction correlates with reduced apoptosis in tobacco protoplasts. — Cytometry A 61: 76–87, 2004.

    Article  PubMed  Google Scholar 

  • Danon, A., Gallois, P.: UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana. — FEBS Lett. 437: 131–136, 1998.

    Article  CAS  PubMed  Google Scholar 

  • De Jong, A.J., Hoeberichts, F.A., Yakimova, E.T., Maximova, E., Woltering, E.J.: Chemical-induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. — Planta 211: 656–662, 2000.

    Article  PubMed  Google Scholar 

  • Del Pozo, O., Lam, E.: Caspases and programmed cell deah in hypersensitive response of plants to pathogenes. — Curr. Biol. 8: 1129–1132, 1998.

    Article  PubMed  Google Scholar 

  • Demura, T., Fukuda, H.: Molecular cloning and characterization of cDNAs associated with tracheary element differentiation in cultured Zinnia cells. — Plant Physiol. 103: 815–821, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Domínguez, F., Cejudo, F.J.: Pattern of endoproteolysis following wheat grain germination. — Physiol. Plant. 95: 253–259, 1995.

    Article  Google Scholar 

  • Duval, I., Brochu, V., Simard, M., Beaulieu, C., Beaudoin, N.: Thaxtomin A induces programmed cell death in Arabidopsis thaliana suspension-cultured cells. — Planta 222: 820–831, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Elbaz, M., Avni, A., Wiel, M.: Constitutive caspase-like machinery executes programmed cell death in plant cells. — Cell Death Differentiation 9: 726–733, 2002.

    Article  CAS  Google Scholar 

  • Fan, T., Xing, T.: Heat shock induces programmed cell death in wheat leaves — Biol. Plant. 48: 389–394, 2004.

    Article  CAS  Google Scholar 

  • Ferri, K.F., Kroemer, G.: Organelle-specific initiation of cell death pathways. — Nat. cell. Biol. 3: E255–263, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, H.: Tracheary element differentiation. — Plant Cell 9: 1147–1156, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Gao, M., Showalter, A.M.: Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. — Plant J. 19: 321–331, 1999.

    Google Scholar 

  • Giorgi, C., Romagnoli, A., Pinton, P., Rizzuto, R.: Ca2+ signaling, mitochondria and cell death. — Curr. mol. Med. 8: 119–130, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura, I., Hatsugai, N., Nakaune, S., Kuroyanagi, M., Nishimura, M.: Vacuolar processing enzyme: an executor of plant cell death. — Curr. Opin. Plant Biol. 8: 404–408, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Heath, M.C.: Hypersensitive response-related death. — Plant mol. Biol. 44: 321–334, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Herbert, R.J., Vilhar, B., Evett, C., Orchard, C.B., Rogers, H.J., Davies, M.S., Francis, D.: Ethylene induces cell death at particular phases of the cell cycle in the tobacco TBY-2 cell line. — J. exp. Bot. 52: 1615–1623, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Hoeberichts, F.A., Orzaez, D., van der Plas, L.H., Woltering, E.J.: Changes in gene expression during programmed cell death in tomato cell suspensions. — Plant mol. Biol. 45: 641–654, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Houot, V., Etienne, P., Petitot, A.-S., Barbier, S., Blein, J.-P., Suty, L.: Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. — J. exp. Bot. 52: 1721–1730, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Jaattela, M.: Multiple cell death pathways as regulators of tumour initiation and progression. — Oncogene 23: 2746–2756, 2004.

    Article  PubMed  Google Scholar 

  • Joo, M., Chi, J.G., Lee, H.: Expressions of HSP70 and HSP27 in hepatocellular carcinoma. — J. korean med. Sci. 20: 829–834, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff, S.R., Gupta, S., Knowlton, A.A.: Cytosolic heat shock protein 60, apoptosis, and myocardial injury. — Circulation 105: 2899–2904, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Koukalová, B., Kovarik, A., Fajkus, J., Siroký, J.: Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. — FEBS Lett. 414: 289–292, 1997.

    Article  PubMed  Google Scholar 

  • Krebs, J.: The role of calcium in apoptosis. — Biometals 11: 375–382, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Lenochová, Z., Soukup, A., Votrubová, O.: Aerenchyma formation in maize roots. — Biol. Plant. 53: 263–270, 2009.

    Article  Google Scholar 

  • Levine, A., Pennell, R.I., Alvarez, M.E., Palmer, R., Lamb, C.: Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. — Curr. Biol. 6: 427–437, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X.: Cytochrome c and dATPdependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. — Cell 91: 479–489, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Malhó, R.: Coding Information in plant cells: the multiple roles of Ca2+ as a second messenger. — Plant Biol. 1: 487–494, 1999.

    Article  Google Scholar 

  • Mizuno, M., Tada, Y., Uchii, K., Kawakami, S., Mayama, S.: Catalase and alternative oxidase cooperatively regulate programmed cell death induced by beta-glucan elicitor in potato suspension cultures. — Planta 220: 849–853, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., Yuan, J.: Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid beta. — Nature 403: 98–103, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., Bossy-Wetzel, E., Burns, K., Fadel, M.P., Lozyk, M., Goping, I.S., Opas, M., Bleackley, R.C., Green, D.R., Michalak, M.: Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. — J. cell. Biol. 150: 731–740, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Neuhoff, V., Arold, N., Taube, D., Ehrhardt, W.: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. — Electrophoresis 9: 255–262, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Rao, R.V., Ellerby, H.M., Bredesen, D.E.: Coupling endoplasmic reticulum stress to the cell death program. — Cell Death Differentiation. 11: 372–380, 2004.

    Article  CAS  Google Scholar 

  • Samali, A., Cai, J., Zhivotovsky, B., Jones, D.P., Orrenius, S.: Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. — EMBO J. 18: 2040–2048, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Sapozhnikov, A.M., Gusarova, G.A., Ponomarev, E.D., Telford, W.G.: Translocation of cytoplasmic HSP70 onto the surface of EL-4 cells during apoptosis. — Cell. Prolif. 35: 193–206, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Shan, Y.X., Liu, T.J., Su, H.F., Samsamshariat, A., Mestril, R., Wang, P.H.: Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. — J. mol. cell. Cardiol. 35: 1135–1143, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Sin, S.F., Chye, M.L.: Expression of proteinase inhibitor II proteins during floral development in Solanum americanum. — Planta 219: 1010–1022, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Sreedhar, A.S., Csermely, P.: Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. — Pharmacol. Theor. 101: 227–257, 2004.

    Article  CAS  Google Scholar 

  • Stankiewicz, A.R., Lachapelle, G., Foo, C.P., Radicioni, S.M., Mosser, D.D.: Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. — J. biol. Chem. 280: 38729–38739, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Stein, J.C., Hansen, G.: Mannose induces an endonuclease responsible for DNA laddering in plant cells. — Plant Physiol. 121: 71–79, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M.C., Alzari, P.M., Kroemer, G.: Mitochondrial release of caspase-2 and -9 during the apoptotic process. — J. exp. Med. 189: 381–394, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Sutton, V.R., Wowk, M.E., Cancilla, M., Trapani, J.A.: Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors. — Immunity 18: 319–329, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Swidzinski, J.A., Leaver, C.J., Sweetlove, L.J.: A proteomic analysis of plant programmed cell death. — Phytochemistry 65: 1829–1838, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Swidzinski, J.A., Sweetlove, L.J., Leaver, C.J.: A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana. — Plant J. 30: 431–446, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Townley, H.E., McDonald, K., Jenkins, G.I., Knight, M.R., Leaver, C.J.: Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner. — Biol. Chem. 386: 161–166, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Tsugita, A., Kamo, M.: 2-D electrophoresis of plant proteins. — Methods mol. Biol. 112: 95–97, 1999.

    CAS  PubMed  Google Scholar 

  • Uren, A.G., O’Rourke, K., Aravind, L.A., Pisabarro, M.T., Seshagiri, S., Koonin, E.V., Dixit, V.M.: Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. — Mol. Cell 6: 961–967, 2000.

    CAS  PubMed  Google Scholar 

  • Víteček, J., Wunschová, A., Petřek, J., Adam, V., Kizek, R., Havel, L.: Cell death induced by sodium nitroprusside and hydrogen peroxide in tobacco BY-2 cell suspension. — Biol. Plant. 51: 472–479, 2007.

    Article  Google Scholar 

  • Xie, Q.E., Liu, I.D., Yu, S.X., Wang, R.F., Fan, Z.X., Wang, Y.G., Shen, F.F.: Detection of DNA ladder during cotyledon senescence in cotton — Biol. Plant. 52: 654–659, 2008

    Article  CAS  Google Scholar 

  • Yariv, J., Rapport, M.M., Graf, L.: The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. — Biochem. J. 85: 383–388, 1962.

    CAS  PubMed  Google Scholar 

  • Young, T.E., Gallie, D.R.: Programmed cell death during endosperm development. — Plant mol. Biol. 44: 283–301, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. P. Jackson for the critical reading of the manuscript and Dr. M.J. Kieliszewski for generously providing the BY-2 suspension cultured cells. This research received financial support from Praxis XXI fellowship SFRH/BD/1183/2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Ricardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves, I., Alves, M., Carrilho, D. et al. Protein changes during programmed cell death in tobacco. Biol Plant 55, 153–158 (2011). https://doi.org/10.1007/s10535-011-0021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0021-y

Additional key words

Navigation