Skip to main content
Log in

Variability of photosynthetic capacity and water relations of Pinus sylvestris L. in the field

  • Published:
Biologia Plantarum

Abstract

Measurements of dependence of photosynthetic electron transport on irradiance and analyses of stable isotope ratios (δ18O, δ13C, δ15N) were performed on 4 to 6-year-old pine trees (Pinus sylvestris L.) in the primeval forest reserve of Białowieża and on 21-year-old pine trees of a plantation of different provenances at the Sękocin Forest Station near Warsaw, Poland. Small differences in maximum photosynthetic electron transport rates, ETRmax were related to growth. Stable isotope analyses suggest that water relations play an important role for the performance of P. sylvestris at the sites studied. The intraspecific comparisons showed a very high variability of photosynthetic capacity between needles of given trees and between individual trees under similar conditions. Differences between specific provenances were also observed. This is relevant for ecological niche occupation in a wide geographical growth range, where P. sylvestris is actually occurring. The high physiological plasticity demonstrated reveals a conspicuous trait of this tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

δ13C:

carbon isotope ratio

δ18O:

oxygen isotope ratio

δ15N:

nitrogen isotope ratio

ETR:

apparent photosynthetic electron transport rate

ETRmax :

ETR at saturation with PAR

F0 :

basic fluorescence of dark adapted needles

F0’:

basic fluorescence of light adapted needles

Fm :

maximum fluorescence of dark adapted needles

Fm’:

maximal fluorescence of light adapted needles

ΔF = Fm’ — F0’; ΔF/Fm’:

effective quantum yield of PS 2

ΔF/Fm50 :

ΔF/Fm’ at half saturation

ΔF/Fmsat :

ΔF/Fm’ at saturation Fv = Fm — F0

Fv/Fm :

potential quantum use efficiency

gs :

stomatal conductance

PAR:

photosynthetically active radiation

PAR50 :

half saturating PAR

PARsat :

saturating PAR

PS:

photosystem

RAPD:

random amplified polymorphic DNA

WUE:

water use efficiency

References

  • Ackerly, D.D., Dudley, S.A., Sultan, S.E., Schmitt, J., Coleman, S., Linder, C.R., Sandquist, D.R., Geber, M.A., Evans, A.S., Dawson, T.E., Lechowicz, M.J.: The evolution of plant ecophysiological traits: recent advances and future directions. — BioScience 50: 979–995, 2000.

    Article  Google Scholar 

  • Adams, M.A., Grierson, P.F.: Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: an update. — Plant Biol. 3: 299–310, 2001.

    Article  CAS  Google Scholar 

  • Barbour, M.M., Walcroft, A.S., Farquhar, G.D.: Seasonal variation in δ13C and Δ18O of cellulose from growth rings of Pinus radiata. — Plant Cell Environ. 25: 1483–1499, 2002.

    Article  Google Scholar 

  • Barnard, R.L., Salmon, Y., Kodama, N., Sörgel, K., Holst, J., Rennenberg, H., Gessler, A., Budemann, N.: Evaporative enrichment and time lags between Δ18O of leaf water and organic pools in a pine stand. — Plant Cell Environ. 30: 539–550, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Bilger, W., Schreiber, U., Bock, M.: Determination of quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. — Oecologia 102: 425–432, 1995.

    Article  Google Scholar 

  • Birjukova, Z.P., Harlamova, N.: [Geographical variavility of drought and cold resistance of common pine.]. — Ekologiya 4: 42–47, 1981. [In Russ.]

    Google Scholar 

  • Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.

    Article  Google Scholar 

  • Brandes, E., Wenninger, J., Koeniger, P., Schindler, D., Rennenberg, H., Leibundgut, C., Mayer, H., Gessler, A.: Assessing environmental and physiological controls over water relations in a Scots pine (Pinus sylvestris L.) stand through analyses of stable isotope composition of water and organic matter. — Plant Cell Environ. 30: 113–127, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Čaňová, I., Ďurkovič, J., Hladká, D. Stomatal and chlorophyll fluorescence characteristics in European beech cultivars during leaf development. — Biol. Plant. 52: 577–581, 2008.

    Article  Google Scholar 

  • Critchfield, W.B., Little, E.L.: Geographic Distribution of Pines of the World. — US Dept. Agricult. Forest Service, Washington 1966.

    Google Scholar 

  • Duquesnay, A., Bréda, N., Stievenard, M., Dupouey, J.L. Changes of tree-ring Δ13C and water-use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century. — Plant Cell Environ. 21: 565–572, 1998.

    Article  Google Scholar 

  • Duursma, R.A., Marshall, J.D.: Vertical canopy gradients in Δ13C correspond with leaf nitrogen content in a mixedspecies conifer forest. — Trees 20: 496–506, 2006.

    Article  Google Scholar 

  • Evans, J.R.: Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen between soluble and thylakoid proteins. — Aust. J. Plant Physiol. 15: 93–106, 1988.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Barbour, M.M., Henry, B.K.: Interpretation of oxygen isotope composition of leaf material. — In: Griffiths, H. (ed.): Stable Isotopes — Integration of Biological, Ecological and Geochemical Processes. P. 27. BIOS Sientific, Oxford 1998.

    Google Scholar 

  • Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. — Annu. Rev. Plant Physiol. 40: 503–537, 1989a.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Hubick, K.T., Condon, A.G., Richards, R.A.: Carbon isotope fractionation and plant water-use efficiency. — In: Rundel, P.W., Ehleringer, J.R., Nagy, K.A. (ed.): Stable Isotopes in Ecological Research. Pp. 21–40. Springer-Verlag, Berlin — Heidelberg — New York 1989b.

    Google Scholar 

  • Field, C.B.: On the role of photosynthetic responses in constraining the habitat distribution of rainforest plants. — Aust. J. Plant Physiol. 15: 343–358, 1988.

    Google Scholar 

  • Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J., Medrano, H.: Mesophyll conductance to CO2: current knowledge and future prospects. — Plant Cell Environ. 31: 602–621, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Gessler, A., Duarte, H.M., Franco, A.C., Lüttge, U., De Mattos, E.A., Nahm, M., Scarano, F.R., Zaluar, H.L.T., Rennenberg, H.: Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SEBrazil. II. Spatial and ontogenetic dynamics in Andira legalis, a deciduous legume tree. — Trees 19: 510–522, 2005.

    Article  Google Scholar 

  • Jędrzejewska, B., Jędrzejewski, W.: Predation in Vertebrate Communities. The Białowieża Primeval Forest as a Case Study. — Springer, Berlin — Heidelberg — New York 1998.

    Google Scholar 

  • Keitel, C., Rennenberg, H., Adams, M.A., Gessler, A.: Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L). — Plant Cell Environ. 26: 1157–1168, 2003.

    Article  CAS  Google Scholar 

  • Kodama, N., Barnard, R. L., Salmon, Y., Weston, C., Ferrio, J. P., Holst, J., Werner, R.A., Saurer, M., Rennenberg, H., Buchmann, N., Gessler, A.: Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. — Oecologia 56: 737–750, 2008.

    Article  Google Scholar 

  • Long, S.P., Zhu, X.-G., Naidu, S.L., Ort, D.R.: Can improvement in photosynthesis increase crop yields? — Plant Cell Environ. 29: 315–330, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lüttge, U.: Physiologische Ökologie der Photosynthese — Autökologische und synökologische Aspekte anhand von δ13C- und δ18O-Daten. — In: Auf Spurensuche in der Natur. P. 69. Dr. Friedrich Pfeil, München 2005.

    Google Scholar 

  • Lüttge, U., Scarano, F.R.: Ecophysiology. — Rev. Brasil Bot. 27: 1–10, 2004.

    Google Scholar 

  • Lüttge, U., Scarano, F.R.: Synecological comparisons sustained by ecophysiological fingerprinting of intrinsic photosynthetic capacity in plants as assessed by measurements of light response curves. — Rev. Brasil Bot. 30: 355–364, 2007.

    Google Scholar 

  • Meusel, H., Jäger, W., Weinert, E.: Vergleichende Chorologie der zentraleuropäischen Flora 1. G. Fischer, Jena 1965.

    Google Scholar 

  • Oleksyn, J., Reich, P.B., Zytkowiak, R., Karolewski, P., Tjoelker, M.G.: Needle nutrients in geographically diverse Pinus sylvestris L. populations. — Ann. Forest. Sci. 59: 1–18, 2002.

    Article  Google Scholar 

  • Poyatos, R., MartÍnez-Vilalta, J., Čermák, J., Ceulemans, R., Granier, A., Irvine, J., Köstner, B., Lagergren, F., Meiresonne, L., Nadezhdina, N., Zimmermann, R., Llorens, P., Mencuccini, M.: Plasticity in hydraulic architecture of Scots pine across Eurasia. — Oecologia 153: 245–259, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Rascher, U., Liebig, M., Lüttge, U.: Evaluation of instant lightresponse curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. — Plant Cell Environ. 23: 1397–1405, 2000.

    Article  CAS  Google Scholar 

  • Santos, M.G., Ribeiro, R.V., Machado, E.C., Pimentel, C.: Photosynthetic parameters and leaf water potential of five common bean genotypes under mild water deficit. — Biol. Plant. 53: 229–236, 2009.

    Article  CAS  Google Scholar 

  • Scheidegger, Y., Saurer, M., Bahn, M., Siegwolf, R.: Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. — Oecologia 125: 350–357, 2000.

    Article  Google Scholar 

  • Schreiber, U., Bilger, W.: Progress in chlorophyll fluorescence research: major developments during the last years in retrospect. — Prog. Bot. 54: 151–173, 1993.

    CAS  Google Scholar 

  • Sokolov, S.J., Svjazeva, O.A., Kubly, V.A.: Arealy Derevev i Kustarnikov SSSR. 1. [Areas of Trees and Shrubs in USSR.1.] — Nauka, Leningrad 1977. [In Russ.]

    Google Scholar 

  • Stanners, D., Bourdeau, P.: Europe’s Environment: the Dobris Assessment Report. — Europe’s Environment Agency, Copenhagen 1995.

    Google Scholar 

  • Szyp-Borowska, I., Staniulyte, R.: [Use of RAPD markers in evaluation of genetic diversity of european populations of Pinus sylvestris.] — Biotechnologica 2: 280–289, 2003. [In Polish]

    Google Scholar 

  • Warren, C.R.: Why does photosynthesis decrease with needle age in Pinus pinaster? — Trees 20: 157–164, 2006.

    Article  Google Scholar 

  • Warren, C. R., McGrath, J.F., Adams, M.A.: Water availability and carbon isotope discrimination in conifers. — Oecologia 127: 476–486, 2001.

    Article  Google Scholar 

  • Xiao, C.-W.X., Janssens, I.A., Yuste, J.C., Ceulemans, R.: Variation of specific leaf area and upscaling to leaf area index in mature Scots pine. — Trees 20: 304–310, 2006.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the administrations of the Primeval Forest Białowieża National Park and the Forest Research Institute Sękocin of the Instytut Badawczy Leśnictwa, Warsaw, for the permissions to work in the forests and for support on site. The editor-in-chief of Biologia Plantarum and an anonymous reviewer are thanked for very useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Lüttge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüttge, U., Escher, P., Paluch, R. et al. Variability of photosynthetic capacity and water relations of Pinus sylvestris L. in the field. Biol Plant 55, 90–98 (2011). https://doi.org/10.1007/s10535-011-0012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0012-z

Additional key words

Navigation