Skip to main content
Log in

The effect of 5-azacytidine on wheat seedlings responses to NaCl stress

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The effect of 5-azacytidine (5-azaC) on the alleviation of damaging effects of NaCl treatment was studied in two wheat (Triticum aestivum L.) cultivars differing in salt tolerance (salt-tolerant Dekang-961 and sensitive Lumai-15). The plants were pre-treated or not with 50 μM 5-azaC and then subjected to salt stress induced by 100 or 150 mM NaCl. Salinity caused reduction in biomass accumulation and increase in malondialdehyde content in root tissues in both cultivars, but less in pre-treated seedlings. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in the roots of both cultivars increased during salt stress, but the rate of increase was higher in Dekang-961. Plants treated with 5-azaC had higher root SOD, CAT and POD activities under salt stress than untreated plants. Content of 5-methylcytosine (5mC) decreased in both cultivars under salt stress, and the level of demethylation was higher in Dekang-961 than that in Lumai-15. Moreover, the degree of methylation was lower in both cultivars under salt stress after 5-azaC application compared to only salt-treated groups. These findings suggested that 5-azaC could protect plants from salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

5-azaC:

5-azacytidine

5mC:

5-methylcytosine

ANOVA:

analysis of variance

CAT:

catalase (EC 1.11.1.6)

CTAB:

cetyltrimethylammoniumbromide

MDA:

malondialdehyde

NBT:

nitroblue tetrazolium

POD:

peroxidase (EC 1.11.1.7)

ROS:

reactive oxygen species

SOD:

superoxide dismutase (EC 1.15.1.1)

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

References

  • Aghaleh, M., Niknam, V., Ebrahimzadeh, H., Razavi., K.: Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. — Biol. Plant. 53: 243–248, 2009.

    Article  CAS  Google Scholar 

  • Aina, R., Sgorbati, S., Santagostino, A., Labra, M., Ghiani, A., Citterio, S.: Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. — Physiol. Plant. 121: 472–480, 2004.

    Article  CAS  Google Scholar 

  • Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601–639, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bender, J.: Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. — Trends Biochem. Sci. 23: 252–256, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A.P.: DNA methylation patterns and epigenetic memory. — Genes Dev. 16: 6–21, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Bor, M., Ozdemir, F., Turkan, I.: The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. — Plant Sci. 164: 77–84, 2003.

    Article  CAS  Google Scholar 

  • Brock, R.D., Davidson, J.L.: 5-Azacytidine and gamma rays partially substitute for cold treatment in vernalization winter wheat. — Environ. exp. Bot. 31: 195–199, 1994.

    Article  Google Scholar 

  • Burn, J.E., Bagnall, D.J., Metzger, J.D., Dennis, E.S., Peacock, W.J.: DNA methylation, vernalization, and the initiation of flowering. — Proc. nat. Acad. Sci. USA 90: 287–291, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Choi, C.S., Sano, H.: Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. — Mol. Genet. Genomics 277: 589–600, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Demeulemeester, M.A.C., Van Stallen, N.M., De Profit, M.P.: Degree of DNA methylation in chicory (Cichorium intybus L.): influence of plant age and vernalization. — Plant Sci. 142: 101–108, 1999.

    Article  CAS  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 32: 93–101, 1981.

    Article  CAS  Google Scholar 

  • Dionisio-Sese, M.L., Tobita, S.: Antioxidant responses of rice seedlings to salinity stress. — Plant Sci. 135: 1–9, 1998.

    Article  CAS  Google Scholar 

  • Dyachenko, O.V., Zakharchenko, N.S., Shevchuk, T.V., Bohnert, H.J., Cushman, J.C., Buryanov, Y.I.: Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. — Biokhimiya (Moscow) 71: 461–465, 2006.

    Article  CAS  Google Scholar 

  • Fedina, I.S., Nedeva, D., Cicek, N.: Pre-treatment with H2O2 induces salt tolerance in barley seedlings. — Biol. Plant. 53: 321–324, 2009.

    Article  CAS  Google Scholar 

  • Filek, M., Keskinen, R., Hartikainen, H., Szarejko, I., Janiak, A., Miszalski, Z., Golda, A.: The protective role of selenium in rape seedlings subjected to cadmium stress. — J. Plant Physiol. 165: 833–844, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, J., Demidov, D., Houben, A., Schubert, I.: Chromosomal histone modification patterns-from conservation to diversity. — Trends Plant Sci. 11: 199–208, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis, C.N., Ries, S.K.: Superoxide dismutases. I. Occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B.A., Ben-Hayyim, G.: Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. — Planta 203: 460–469, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, J.A., Ferrer, M.A., Jimenez, A., Ros Barcelo, A.R., Sevilla, F.: Antioxidant systems and O2 ·-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. — Plant Physiol. 127: 817–831, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Holliday, R.: Epigenetic inheritance based on DNA methylation. — In: Jost, J.P., Saluz, H.P. (ed.): DNA Methylation: Molecular Biology and Biological Significance. Pp. 452–468. Birkhauser Verlag, Basel 1993.

    Google Scholar 

  • Horvath, E., Szalai, G., Janda, T., Paldi, E., Racz, I., Lasztity, D.: Effect of vernalisation and 5-azacytidine on the methylation level of DNA in wheat (Triticum aestivum L., cv. Martonvasar 15). — Plant Sci. 165: 689–692, 2003.

    Article  CAS  Google Scholar 

  • Jiang, Y.W., Huang, B.G.: Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. — J. exp. Bot. 52: 341–349, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kovarik, A., Koukalova, B., Bezdek, M., Opatrny, Z.: Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. — Theor. appl. Genet. 95: 301–306, 1997.

    Article  Google Scholar 

  • Labra, M., Ghiani, A., Citterio, S., Sgorbati, S., Sala, F., Vannini, C., Ruffini-Castiglione, M., Bracale, M.: Analysis of cytosine methylation pattern in response to water deficit in pea root tips. — Plant Biol. 4: 694–699, 2002.

    Article  CAS  Google Scholar 

  • Lee, Y.W., Broday, L., Costa, M.: Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels. — Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 415: 213–218, 1998.

    Article  CAS  Google Scholar 

  • Lizal, P., Relichova, J.: The effect of day length, vernalization and DNA demethylation on the flowering time in Arabidopsis thaliana. — Physiol. Plant. 113: 121–127, 2001.

    Article  CAS  Google Scholar 

  • Munns, R.: Comparative physiology of salt and water stress. — Plant Cell Environ. 25: 239–250, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Murray, H.G., Thompson, W.F.: Rapid isolation of high molecular weight DNA. — Nucl. Acids Res. 8: 4321–4325, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Mutlu, S., Atici, Ö., Nalbantoglu, B.: Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. — Biol. Plant. 53: 334–338, 2009.

    Article  CAS  Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249–279, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski, J., Whitham, S.A.: Gene silencing and DNA methylation processes. — Curr. Opin. Plant Biol. 4: 123–129, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Polle, A., Otter, T., Seifert, F.: Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). — Plant Physiol. 106: 53–60, 1994.

    PubMed  CAS  Google Scholar 

  • Sairam, R.K., Rao, K.V., Srivastava, G.C.: Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolytes concentration. — Plant Sci. 163: 1037–1046, 2002.

    Article  CAS  Google Scholar 

  • Sano, H., Kamada, I., Youssefian, S., Katsumi, M., Wabiko, H.: A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. — Mol. gen. Genet. 220: 441–447, 1990.

    Article  CAS  Google Scholar 

  • Serrano, R., Rodriguez, P.L.: Plants, genes and ions. — EMBO Rep. 3: 116–119, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Steward, N., Ito, M., Yamakuchi, Y., Koizumi, N., Sano, H.: Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. — J. biol. Chem. 277: 37741–37746, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar, C., Lakshmi, A., Giridarakumar, S.: Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. — Plant Sci. 161: 613–619, 2001.

    Article  CAS  Google Scholar 

  • Tariq, M., Paszkowski, J.: DNA and histone methylation in plants. — Trends Plant Sci. 6: 244–251, 2004.

    Google Scholar 

  • Wang, W.X., Vinocur, B., Altman, A.: A plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. — Planta 218: 1–14, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Yong, W., Xu, Y., Xu, W., Wang, X., Li, N., Wu, J., Liang, T., Chong, K., Xu, Z., Tan, K., Zhu, Z.: Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. — Planta 217: 261–270, 2003.

    PubMed  CAS  Google Scholar 

  • Young, C.B., Jung, J.: Water deficit-induced oxidative stress and antioxidative defenses in rice plants. — J. Plant Physiol. 155: 255–261, 1999.

    Google Scholar 

  • Zhu, J.K.: Regulation of ion homeostasis under salt stress. — Curr. Opin. Plant Biol. 6: 441–445, 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support from the National Natural Science Foundation of China (No. 30821064) and the Chinese 111 Project (B06018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, L., Xu, Y.H. & Wang, J.B. The effect of 5-azacytidine on wheat seedlings responses to NaCl stress. Biol Plant 54, 753–756 (2010). https://doi.org/10.1007/s10535-010-0135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-010-0135-7

Additional key words

Navigation