Skip to main content
Log in

Functional characterization of the apple MdSAMDC2 gene by ectopic promoter analysis and over-expression in tobacco

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The expression of MdSAMDC2 gene, which encodes S-adenosylmethionine decarboxylase (SAMDC) in apple, was up-regulated by low temperature, salt and drought stresses. To identify its in vivo biological functions in the responses to stresses, the promoter region of MdSAMDC2 was isolated and characterized by analyzing the cis-acting regulatory elements and GUS reporter gene by an Agrobacterium-mediated transformation. GUS activity was enhanced upon salt and cold stresses, indicating that MdSAMDC2 promoter region controls gene transcription under stresses. In parallel, several lines of the transgenic tobacco plants over-expressing MdSAMDC2 were obtained. The contents of three polyamines greatly increased in the transgenic lines compared with the non-transgenic WT control. Upon exposed to low temperature (4 °C), salt (150 and 250 mM NaCl) and osmotic (20 % polyethylene glycol) stresses, transgenic plants produced more free polyamines and more active antioxidative enzymes such as superoxide dismutase and catalase than the WT control. Meanwhile, malondialdehyde content, an indicator for membrane lipid peroxidation, decreased in transgenic plants relative to the WT control. Thus, over-expression of MdSAMDC2 in tobacco conferred tolerance to stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

GUS:

β-glucurodinase

MDA:

malondialdehyde

PCR:

polymerase chain reaction

PEG:

polyethylene glycol

SOD:

superoxide dismutase

WT:

wild type

Reference

  • Bolle, C., Herrmann, R.G., Oelmller, R.: A spinach cDNA with homology to S-adenosylmethionine decarboxylase. — Plant Physiol. 107: 1461–1462, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Capell, T., Bassie, L., Christou, P.: Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. — Proc. nat. Acad. Sci. USA 101: 9909–9914, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B., Hong, X., Agarwal, M., Zhu, J.K.: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. — Genes Dev. 17: 1043–1054, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Cowley, T., Walters, D.R.: Polyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus Blumeria graminis f. sp. hordei. — Plant Cell Environ. 25: 461–468, 2002.

    Article  CAS  Google Scholar 

  • De Agazio, M., Zacchini, M., Federico, R., Grego, S.: Putrescine accumulation in maize roots treated with spermidine: evidence for spermidine to putrescine conversion. — Plant Sci. 111: 181–185, 1995.

    Article  Google Scholar 

  • Dresselhaus, T., Barcelo, P., Hagel, C., Lörz, H., Humbeck, K.: Isolation and characterization of a Tritordeum cDNA encoding S-adenosylmethionine decarboxylase that is circadian-clock regulated. — Plant mol. Biol. 30: 1021–1033, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Duhaze, C., Gouzerh, G., Gagneul, D., Larher, F., Bouchereau, A.: The conversion of spermidine to putrescine and 1,3-diaminopropane in the roots of Limonium tataricum. — Plant Sci. 163: 39–646, 2002.

    Article  Google Scholar 

  • Evans, P.T., Malmberg, R.L.: Do polyamines have roles in plant development? — Annu. Rev. Plant Physiol. Plant mol. Biol. 40: 235–269, 1989.

    CAS  Google Scholar 

  • Franceschetti, M., Hanfrey, C., Scaramagli, S., Torrigiani, P., Bagni, N., Burtin, D., Michael, A.J.: Characterization of monocot and dicot plant S-adenosyl-l-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. — Biochem. J. 353: 403–409, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Hao, Y.J., Zhang, Z.L., Kitashiba, H., Honda, C., Ubi, B., Kita, M., Moriguchi, T.: Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses. — Gene 350: 41–50, 2005.

    Article  CAS  PubMed  Google Scholar 

  • He, L., Ban, Y., Inoue, H., Matsuda, N., Liu, J., Moriguchi, T.: Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. — Phytochemistry 69: 2133–2141, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A., Bevan, M.W.: GUS-fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. — EMBO J. 6: 3901–3907, 1987.

    CAS  PubMed  Google Scholar 

  • Kashiwagi, K., Taneja, S.K., Liu, T.Y., Tabor, C.W., Tabor, H.: Spermidine biosynthesis in Saccharomyces cerevisiae. Biosynthesis and processing of a proenzyme form of S-adenosylmethionine decarboxylase. — J. biol. Chem. 265: 22321–22328, 1990.

    CAS  PubMed  Google Scholar 

  • Kumar, A., Taylor, M.A., Mad Arif, S.A., Davies, H.: Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. — Plant J. 9: 147–158, 1996.

    Article  CAS  Google Scholar 

  • Kwon, S.W., Ko, B.R., Bai, D.G.: Changes in antioxidant enzymes and polyamines in response to low temprature chilling in watermelon. — Acta Hort. 620: 111–117, 2003.

    CAS  Google Scholar 

  • Lee, M.M., Lee, S.H., Park, K.Y.: Characterization and expression of two members of the S-adenosylmethionine decarboxylase gene family in carnation flower. — Plant mol. Biol. 34: 371–382, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z.Y., Chan, S.Y.: Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. — Theor. appl. Genet. 100: 782–788, 2000.

    Article  CAS  Google Scholar 

  • Luo, K., Zheng, X., Chen, Y., Xiao, Y., Zhao, D., McAvoy, R., Pei, Y., Li, Y.: The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation. — Plant Cell Rep. 25: 403–409, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Mad Arif, S.A., Taylor, M.A., George, L.A., Butler, A.R., Burch, L.R., Davies, H.V., Stark, M.J.R., Kumar, A.: Characterisation of the S-adenosylmethionine decarboxylase (SAMDC) gene in potato. — Plant mol. Biol. 26: 327–338, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Marco, F., Carrasco, P.: Expression of the pea S-adenosylmethionine decarboxylase is involved in developmental and environmental responses. — Planta 214: 641–647, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, R.A., Cassol, T., Li, N., Ali, N., Handa, A.K., Mattoo, A.K.: Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. — Nat. Biotechnol. 20: 613–618, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Meshi, T., Iwabuchi, M.: Plant transcription factors. — Plant Cell Physiol. 36: 1405–1420, 1995.

    CAS  PubMed  Google Scholar 

  • Mo, H., Pua, E.C.: Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress. — Physiol. Plant. 114: 439–449, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Pajunen, A., Crozat, A., Janne, O.A., Ihalainen, R., Laitinen, P.H., Stanley, B., Madhubala, R., Pegg, A.E.: Structure and regulation of mammalian S-adenosylmethionine decarboxylase. — J. biol. Chem. 263: 17040–17049, 1988.

    CAS  PubMed  Google Scholar 

  • Pérez-Amador, M.A., Leon, J., Green, P.J., Carbonell, J.: Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. — Plant Physiol. 130: 1454–1463, 2002.

    Article  PubMed  Google Scholar 

  • Pillai, M.A., Akiyama, T.: Differential expression of an S-adenosylmethionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. — Mol. Genet. Genomics 271: 141–149, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Porebski, S.L., Bailey, G., Baum, B.R.: Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. — Plant mol. Biol. Rep. 15: 8–15, 1997.

    Article  CAS  Google Scholar 

  • Roy, M., Wu, R.: Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. — Plant Sci. 163: 987–992, 2002.

    Article  CAS  Google Scholar 

  • Shen, W.Y., Kazuyoshi, N., Shoji, T.: Involvement of polyamines in the chilling tolerance of cucumber cultivars. — Plant Physiol. 124: 431–440, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, S.D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. — Plant J. 33: 259–270, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Sofo, A., Dichio, B., Xiloyannis, C., Masia, A.: Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. — Plant Sci. 66: 293–302, 2004.

    Article  Google Scholar 

  • Su, G.X., Bai, X.: Contribution of putrescine degradation to proline accumulation in soybean leaves under salinity. — Biol. Plant. 52: 796–799, 2008.

    Article  CAS  Google Scholar 

  • Thu-Hang, P., Bassie, L., Safwat, G., Treng-Nghia, P., Christou, P., Capell, T.: Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. — Plant Physiol. 129: 1744–1754, 2002.

    Article  PubMed  Google Scholar 

  • Tian, A.G., Zhao, J.Y., Zhang, J.S., Gai, J.Y., Chen, S.Y.: Genomic characterization of the S-adenosylmethionine decarboxylase genes from soybean. — Theor. appl. Genet. 108: 842–850, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Tiburcio, A.F., Campos, J.L., Figueras, X., Besford, R.T.: Recent advances in the understanding of polyamine functions during plant development. — Plant Growth Regul. 12: 331–340, 1993.

    Article  CAS  Google Scholar 

  • Tonon, G., Kevers, C., Faivre-Rampant, O., Graziani, M., Gaspar, T.: Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. — J. Plant Physiol. 161: 701–708, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Valliyodan, B., Nguyen, H.T.: Understanding regulatory networks and engineering for enhanced drought tolerance in plants. — Curr. Opin. Plant Biotechnol. 9: 189–195, 2006.

    Article  CAS  Google Scholar 

  • Vinocur, B., Altman, A.: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. — Curr. Opin. Biotechnol. 16: 123–132, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Waie, B., Rajam, M.V.: Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. — Plant Sci. 164: 727–734, 2003.

    Article  CAS  Google Scholar 

  • Watson, M.B., Malmberg, R.L.: Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress. — Plant Physiol. 111: 1077–1083, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Wen, X.P., Pang, X.M., Matsuda, N., Kita, M., Inoue, H., Hao, Y.J., Honda, C., Moriguchi, T.: Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. — Transgenic Res. 17: 251–263, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Wi, S.J., Kim, W.T., Park, K.Y.: Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. — Plant Cell Rep. 25: 1111–1121, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Wu, A.M., Liu, J.Y.: An improved method of genomic walking for promoter sequences cloning. — Chin. J. Biochem. mol. Biol. 22: 243–246, 2006.

    CAS  Google Scholar 

  • Zhang, J., Kirkham, M.B.: Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. — Plant Cell Physiol. 35: 785–791, 1994.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Foundation for the Author of National Excellent Doctoral Dissertation (200459), Program for New Century Excellent Talents in University (NCET-06-607) and National High Technology Research and Development Program (2008AA10Z157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. -J. Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L.L., Song, L.Q., You, C.X. et al. Functional characterization of the apple MdSAMDC2 gene by ectopic promoter analysis and over-expression in tobacco. Biol Plant 54, 631–638 (2010). https://doi.org/10.1007/s10535-010-0113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-010-0113-0

Additional key words

Navigation