Skip to main content
Log in

Sensitivity of stem and petiole hydraulic conductance of deciduous trees to xylem sap ion concentration

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Hydraulic conductance of stem and petioles increased in response to an increase in xylem sap ion concentration, and decreased in response to a decrease in the ion concentration in six temperate deciduous tree species. The ion sensitivity of hydraulic conductance of stem and petioles was higher than the ion sensitivity of the stem alone. The ion sensitivity was lowest in the earliest developmental stages of the xylem, and had a seasonal maximum in the second half of summer. The ion sensitivity was highest in slow-growing species and lowest in fast-growing species. The ion sensitivity correlated negatively with mean radius of xylem conduits, hydraulic conductance of stem and petioles, hydraulic conductance of leaf laminae, and stomatal conductance, and positively with response of the hydraulic conductance of leaf laminae to HgCl2, and stomatal response to a decrease in leaf water potential or abscisic acid. It was concluded that the high ion sensitivity of xylem hydraulic conductance is a relevant characteristic of slow growth and a conservative water use strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cion :

xylem sap ion concentration

EC:

electrical conductivity

Ks :

hydraulic conductance of shoot stem

Ksp :

hydraulic conductance of shoot stem and petioles

Ss :

ion sensitivity of hydraulic conductance of shoot stem

Ssp :

ion sensitivity of hydraulic conductance of shoot stem and petioles

References

  • Aasamaa, K., Niinemets, Ü., Sõber, A.: Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula leaf ontogeny. — Tree Physiol. 25:1409–1418, 2005.

    PubMed  Google Scholar 

  • Aasamaa, K., Sõber, A.: Hydraulic conductance and stomatal sensitivity to changes of leaf water status in six deciduous tree species. — Biol. Plant. 44: 65–73, 2001.

    Article  Google Scholar 

  • Aasamaa, K., Sõber, A.: Seasonal courses of maximum hydraulic conductance in shoots of six temperate deciduous tree species. — Funct. Plant. Biol. 32: 1077–1087, 2005.

    Article  Google Scholar 

  • Aasamaa, K., Sõber, A., Hartung, W., Niinemets, Ü.: Drought acclimation of two deciduous tree species of different layers in a temperate forest canopy. — Trees 18: 93–101, 2004.

    Google Scholar 

  • Aasamaa, K., Sõber, A., Rahi, M.: Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. — Aust. J. Plant Physiol. 28: 765–774, 2001.

    Google Scholar 

  • Bahrun, A., Jensen, C.R., Asch, F., Mogensen, V.O.: Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.) — J. exp. Bot. 53: 251–263, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, C.K., Zwieniecki, M.A., Cody, G.D., Jacobsen, C., Wirick, S., Knoll, A.H., Holbrook, N.M.: Evolution of xylem lignification and hydrogel transport regulation. — Proc. nat. Acad. Sci. Plant Biol. 101: 17555–17558, 2004.

    Article  CAS  Google Scholar 

  • Brett, C.T., Waldron, K.W. (ed.): Physiology and Biochemistry of Plant Cell Walls. — Chapman & Hall, London 1996.

    Google Scholar 

  • Castro-Díez, P., Navarro, J., Pintado, A., Sancho, L.G., Maestro, M.: Interactive effects of shade and irrigation on the performance of seedlings of three Mediterranean Quercus species. — Tree Physiol. 26: 389–400, 2006.

    Article  PubMed  Google Scholar 

  • Chapin, F.S., III, Autumn, K., Pugnaire, F.: Evolution of suites of traits in response to environmental stress. — Amer. Natur. 142: S78–S92, 1993.

    Article  Google Scholar 

  • Choat, B., Jansen, S., Zwieniecki, M.A., Smets, E., Holbrook, N.M.: Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. — J. exp. Bot. 55: 1569–1575, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Choat, B., Brodie, T.W., Cobb, A.R., Zwieniecki, M.A., Holbrook, N.M.: Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. — Amer. J. Bot. 93: 993–1000, 2006.

    Article  Google Scholar 

  • Cochard, H., Tyree, M.T.: Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. — Tree Physiol. 6: 393–407, 1990.

    PubMed  Google Scholar 

  • Dickison, W.C.: Integrative Plant Anatomy. — Academic Press, San Diego — San Francisco — New York — Boston — London — Toronto — Sydney — Tokyo 2000.

    Google Scholar 

  • Donovan, L.A., West, J.B., McLeod, K.W.: Quercus species differ in water and nutrient characteristics in a resource-limited fall-line sandhill habitat. — Tree Physiol. 20: 929–936, 2000.

    PubMed  CAS  Google Scholar 

  • Ellmore, G.S., Zanne, A.E., Orians, C.M.: Comparative sectoriality in temperate hardwoods: hydraulics and xylem anatomy. — Bot. J. Linn. Soc. 150: 61–71, 2006.

    Article  Google Scholar 

  • Ewers, F.W., Fisher, J.B.: Variation in vessel length and diameter in stems of six tropical and subtropical lianas. — Amer. J. Bot. 76: 1452–1459, 1989.

    Article  Google Scholar 

  • Gajardo-Caviedes, P.A., Espinosa, M.A., González, U. del T., Ríos, D.G.: The influence of thinning and tree size on the sapwood area / leaf area ratio in coigue. — Can. J. Forest Res. 35: 1679–1685, 2005.

    Article  Google Scholar 

  • Galmés, J., Cifre, J., Medrano, H., Flexas, J.: Modulation of relative growth rate and its components by water stress in Mediterranean species with different growth forms. — Oecologia 145: 21–31, 2005.

    Article  PubMed  Google Scholar 

  • Gascó, A., Gortan, E., Salleo, S., Nardini, A.: Changes of pH solutions during perfusion through stem segments: further evidence for hydrogel regulation of xylem hydraulic properties? — Biol. Plant. 52: 502–506, 2008.

    Article  Google Scholar 

  • Gascó, A., Nardini, A., Gortan, E., Salleo, S.: Ion-mediated increase in the hydraulic conductivity of laurel stems: role of pits and consequences for the impact of cavitation on water transport. — Plant Cell Environ. 29: 1946–1955, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Gascó, A., Salleo, S., Gortan, E., Nardini, A.: Seasonal changes in the ion-mediated increase of xylem hydraulic conductivity in stems of three evergreens: any functional role? — Physiol. Plant. 129: 597–606, 2007.

    Article  CAS  Google Scholar 

  • Gorsuch, D.M., Oberbauer, S.F.: Effects of mid-season frost and elevated growing season temperature on stomatal and specific xylem conductance of the arctic shrub, Salix pulchra. — Tree Physiol. 22: 1027–1034, 2002.

    PubMed  Google Scholar 

  • Grignon, C., Sentenac, H.: pH and ionic conditions in the apoplast. — Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 103–128, 1991.

    Article  CAS  Google Scholar 

  • Hacke, U.G., Sperry, J.S., Wheeler, J.K., Castro, L.: Scaling of angiosperm xylem structure with safety and efficiency. — Tree Physiol. 26: 689–701, 2006.

    PubMed  Google Scholar 

  • Herdel, K., Schmidt, P., Feil, R., Mohr, A., Schurr, U.: Dynamics of concentration and nutrient fluxes in the xylem of Ricinus communis — diurnal course, impact of nutrient availability and nutrient uptake. — Plant Cell Environ. 24: 41–52, 2001.

    Article  CAS  Google Scholar 

  • Holbrook, N.M., Zwieniecki, M.A., Melcher, P.J.: The dynamics of “dead” wood: maintenance of water transport through plant stems. — Integr. Comp. Biol. 42: 492–496, 2002.

    Article  Google Scholar 

  • Huber, B., Merz, W.: [Meaning of bordered pits for axial water conductivity of resinous woods.] — Planta 51: 645–672, 1958. [In German]

    Article  Google Scholar 

  • Jarbeau, J.A., Ewers, F.W., Davis, S.D.: The mechanism of water-stress-induced embolism in two species of chaparral shrubs. — Plant Cell Environ. 18: 189–196, 1995.

    Article  Google Scholar 

  • Johansson, S., Tuomela, K.: Growth of sixteen provenances of Eucalyptus microtheca in regularly irrigated plantation in eastern Kenya. — Forest Ecol. Manage. 82: 11–18, 1996.

    Article  Google Scholar 

  • Kozlowsky, T.T., Pallardy, S.G.: Physiology of Woody Plants. — Academic Press, San Diego — London — Boston — New York — Sydney — Tokyo — Toronto 1997.

    Google Scholar 

  • Laas, E.: Dendroloogia [Dendrology.] — Valgus, Tallinn 1987. [In Estonian]

    Google Scholar 

  • Li, C.: Carbon isotope composition, water-use efficiency and biomass productivity of Eucalyptus microtheca populations under different water supplies. — Plant Soil 214: 165–171, 1999.

    Article  CAS  Google Scholar 

  • Loewenstein, N.J., Pallardy, S.G.: Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms. — Tree Physiol. 18: 431–439, 1998.

    PubMed  CAS  Google Scholar 

  • López-Portillo, J., Ewers, F.W., Angeles, G.: Sap salinity effects on xylem conductivity in two mangrove species. — Plant Cell Environ. 28: 1285–1292, 2005.

    Article  Google Scholar 

  • Maillette, L.: Seasonal model of modular growth in plants. — J. Ecol. 80: 123–130, 1992.

    Article  Google Scholar 

  • Marron, N., Dreyer, E., Boudouresque, E., Delay, D., Petit, J.-M., Delmotte, F.M., Brignolas, F.: Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus ×canadensis (Moench) clones, ‘Dorskamp’ and ‘Luisa_Avanzo’. — Tree Physiol. 23: 1225–1235, 2003.

    PubMed  Google Scholar 

  • Mathiesen, A.: Dendroloogia. [Dendrology.] — Estonian Acad. Forest. Soc., Tartu 1934. [In Estonian]

    Google Scholar 

  • Miller, D.M.: Studies of root function in Zea mays. III. Xylem sap composition at maximum root pressure provides evidence of active transport into the xylem and a measurement of the reflection coefficient of the root. — Plant Physiol. 77: 162–167, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Nardini, A., Gasco, A., Trifilò, P., Lo Gullo, M.A., Salleo, S.: Ion-mediated enhancement of xylem hydraulic conductivity is not always suppressed by the presence of Ca2+ in the sap. — J. exp. Bot. 58: 2609–2615, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Nardini, A., Pitt, F.: Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture. — New Phytol. 143: 485–493, 1999.

    Article  Google Scholar 

  • Orians, C.M., Babst, B.B., Zanne, A.E.: Vascular constraints and long-distance transport in dicots. — In: Holbrook, N.M., Zwieniecki, M.A. (ed.): Vascular Transport in Plants. Pp. 355–371. Elsevier Academic Press, Amsterdam — Boston — Heidelberg — London — New York — Oxford — Paris — San Diego — San Francisco — Singapore — Sydney — Tokyo 2005.

    Chapter  Google Scholar 

  • Passioura, J.B.: Water in the soil-plant-atmosphere continuum. — In: Lange, O.L., Nobel, P.L., Osmond, C.B., Ziegler, H. (ed.): Encyclopedia of Plant Physiology, New Series: Physiological Plant Ecology II, Vol. 12 B. Pp. 5–33. Springer-Verlag, Berlin — Heidelberg — New York 1982.

    Google Scholar 

  • Pate, J.S., Jeschke, W.D.: The role of stems in transport, storage and circulation of ions and metabolites by the whole plant. — In: Gartner, B.L. (ed.): Plant Stems. Physiology and Functional Morphology. Pp. 177–204. Academic Press, London — San Diego 1995.

    Google Scholar 

  • Peuke, A.D., Jeschke, W.D., Hartung, W.: Flows of elements, ions and abscisic acid in Ricinus communis under potassium limitation. — J. exp. Bot. 53: 241–250, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Querejeta, J.I., Barea, J.M., Allen, M.F., Caravaca, F., Roldán, A.: Differential response of δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. — Oecologia 135: 510–515, 2003.

    PubMed  Google Scholar 

  • Ridley, B.L., O’Neill, M.A., Mohnen, D.: Pectins: structure, biosynthesis, and oligogalacturonide-related signalling. — Phytochemistry 57: 929–967, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ryden, P., MacDougall, A.J., Tibbits, C.W., Ring, S.G.: Hydration of pectic polysaccharides. — Biopolymers 54: 398–405, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Salleo, S., Raimondo, F., Trifilò, P., Nardini, A.: Axial-to-radial water permeability of leaf major veins: a possible determinant of the impact of vein embolism on leaf hydraulics? — Plant Cell Environ. 26: 1749–1758, 2003.

    Article  Google Scholar 

  • Salleo, S., Trifilò, P., Lo Gullo, M.A.: Phloem as a possible major determinant of rapid cavitation reversal in stems of Laurus nobilis (laurel) — Funct. Plant Biol. 33: 1063–1074, 2006.

    Article  Google Scholar 

  • Sano, Y.: Inter- and intraspecific structural variations among intervascular pit membranes, as revealed by field-emission scanning electron microscopy. — Amer. J. Bot. 92: 1077–1084, 2005.

    Article  Google Scholar 

  • Schurr, U., Schulze, E.-D.: The concentration of xylem sap in root exudate, and in sap from intact transpiring castor bean plants (Ricinus communis L.). — Plant Cell Environ. 18: 409–420, 1995.

    Article  CAS  Google Scholar 

  • Siebrecht, S., Herdel, K., Schurr, U., Tischner, R.: Nutrient translocation in the xylem of poplar — diurnal variations and spatial distribution along the shoot axis. — Planta 217: 783–793, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, J.S., Nichols, K.L., Sullivan, J.E.M., Eastlack, S.E.: Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. — Ecology 75: 1736–1752, 1994.

    Article  Google Scholar 

  • Sperry, J.S., Hacke, U.G., Wheeler, J.K.: Comparative analysis of end wall resistivity in xylem conduits. — Plant Cell Environ. 28: 456–465, 2005.

    Article  Google Scholar 

  • Sperry, J.S., Hacke, U.G., Pittermann, J.: Size and function in conifer tracheids and angiosperm vessels. — Amer. J. Bot. 93: 1490–1500, 2006.

    Article  Google Scholar 

  • Thakur, B.R., Singh, A.K., Handa, A.K.: Chemistry and use of pectin — a review. — Crit. Rev. Food Sci. Nutr. 37: 47–73, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Trifilò, P., Lo Gullo, M.A., Salleo, S., Callea, K., Nardini, A.: Xylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements. — Tree Physiol. 28: 1505–1512, 2008.

    PubMed  Google Scholar 

  • Tyree, M.T., Salleo, S., Nardini, A., Lo Gullo, M.A., Mosca, R.: Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? — Plant Physiol. 120: 11–21, 1999.

    Article  CAS  Google Scholar 

  • Van Ieperen, W., Van Gelder, A.: Ion-mediated flow changes suppressed by minimal calcium presence in xylem sap in Chrysanthemum and Prunus laurocerasus. — J. Exp. Bot. 57: 2743–2750, 2006.

    Article  PubMed  Google Scholar 

  • Van Ieperen, W., Van Meeteren, U., Van Gelder, H.: Fluid ionic composition influences hydraulic conductance of xylem conduits. — J. exp. Bot. 51: 769–776, 2000.

    Article  PubMed  Google Scholar 

  • Weih, M.: Evidence for increased sensitivity to nutrient and water stress in a fast-growing hybrid willow compared with a natural willow clone. — Tree Physiol. 21: 1141–1148, 2001.

    PubMed  CAS  Google Scholar 

  • Wheeler, J.K., Sperry, J.S., Hacke, U.G., Huang, N.: Intervessel pitting and cavitation in woody Rosaceae and other vesseled plants: a basis for a safety vs. efficiency trade-off in xylem transport. — Plant Cell Environ. 28: 800–812, 2005.

    Article  Google Scholar 

  • Zanne, A.E., Sweeney, K., Sharma, M., Orians, C.M.: Patterns and consequences of differential vascular sectoriality in 18 temperate tree and shrub species. — Funct. Ecol. 20: 200–206, 2006.

    Article  Google Scholar 

  • Zimmermann, M.H.: Hydraulic architecture of some diffuse-porous trees. — Can. J. Bot. 56: 2286–2295, 1978.

    Article  Google Scholar 

  • Zimmermann, M.H., Jeje, A.A.: Vessel length distribution of some American woody plants. — Can. J. Bot. 59: 1882–1892, 1981.

    Google Scholar 

  • Zwieniecki, M.A., Hutyra, L., Thompson, M.V., Holbrook, N.M.: Dynamic changes in petiole specific conductivity in red maple (Acer rubrum L.), tulip tree (Liriodendron tulipifera L.) and northern fox grape (Vitis labrusca L.). — Plant Cell Environ. 23: 407–414, 2000.

    Article  Google Scholar 

  • Zwieniecki, M.A., Melcher, P.J., Field, T.S., Holbrook, N.M.: A potential role for xylem-phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance. — Tree Physiol. 24: 911–917, 2004.

    PubMed  Google Scholar 

  • Zwieniecki, M.A., Melcher, P.J., Holbrook, N.M.: Hydrogel control of xylem hydraulic resistance in plants. — Science 291: 1059–1062, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The study was financed by the Estonian Science Foundation (grants no. 6823 and 6969), and by the Estonian Ministry of Science and Education (target-financed themes no. 0172100s02 and 0170021s08). We also thank the staff of the Department of Food Science and Hygiene (at the Estonian University of Life Sciences) for permitting us to use their laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Aasamaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aasamaa, K., Sõber, A. Sensitivity of stem and petiole hydraulic conductance of deciduous trees to xylem sap ion concentration. Biol Plant 54, 299–307 (2010). https://doi.org/10.1007/s10535-010-0052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-010-0052-9

Additional key words

Navigation