Skip to main content
Log in

Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

We evaluated the combined effects of elevated CO2 and water availability on photosynthesis in barley. Soil and plant water content decreased with water stress, but less under elevated CO2 concentration (EC) compared with ambient CO2 concentration (AC). During water stress, stomatal conductance, carboxylation rate, RuBP regeneration, and the rate of triose phosphate utilisation (TPU) were decreased but less when plants grew under EC. Drought treatments caused only a slight effect on maximum photochemical efficiency (variable to maximum fluorescence ratio, Fv/Fm), whereas the actual quantum yield (ΦPS2), maximum electron transport rate (Jmax) and photochemical quenching (qP) were decreased and the non photochemical quenching (NPQ) was enhanced. Under water deficit, the allocation of electrons to CO2 assimilation was diminished by 49 % at AC and by 26 % at EC while the allocation to O2 reduction was increased by 15 % at AC and by 12 % at EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC:

ambient CO2 concentration

ca :

external CO2 concentration

ci :

intercellular CO2 concentration

EC:

elevated CO2 concentration (700 μmol mol−1)

ETR:

the apparent total electron transport rate

ΦCO 2 :

the apparent quantum yield of CO2 fixation

ΦPS2 :

actual quantum yield of PS 2

F0, F′0 :

minimum fluorescence of dark- and light-adapted leaves

Fm, F′m :

maximum fluorescence of dark- and light-adapted leaves

Fs :

steady-state fluorescence in light-adapted leaves

F′v/F′m :

photochemical trapping efficiency in dark-adapted leaves

F′v/F′m :

photochemical efficiency of PS 2 open centres

gs :

stomatal conductance

Jmax :

maximum electron transport rate

Jc :

carboxylation electron transport

Jo :

oxygenation electron transport

NPQ:

non-photochemical quenching of fluorescence yield

PN :

net photosynthetic rate

PNmax :

PN at saturating CO2 concentration

PPFD:

photosynthetically active photon flux density

qP:

photochemical quenching of fluorescence yield

RD :

respiration rate in the dark

RL :

respiration rate in the light

RSWC:

relative soil water content

RWC:

leaf relative water content

TPU:

triose phosphate utilisation

Vcmax :

maximum carboxylation rate

ΓCO 2 :

carbon dioxide compensation point

Ψo :

leaf osmotic potential

Ψw :

leaf water potential.

References

  • Bunce, J.A.: Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. — Global Change Biol. 6: 371–382, 2000.

    Article  Google Scholar 

  • Centritto, M.: Photosynthetic limitations and carbon partitioning in cherry in response to water deficit and elevated [CO2]. — Agr. Ecosyst. Environ. 106: 233–242, 2005.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., Grace, S.C.: Physiology of light tolerance in plants. — Hort. Rev. 18: 215–246, 1997.

    CAS  Google Scholar 

  • Drake, B.G., González-Meler, M.A., Long, S.P.: More efficient plants: a consequence of rising atmospheric CO2? — Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 609–639, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Epron, D., Godard, D., Cornic, G., Genty, B.: Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). — Plant Cell Environ. 18: 43–51, 1995.

    Article  Google Scholar 

  • Escalona, J.M., Flexas, J., Medrano, H.: Stomatal and nonstomatal limitations of photosynthesis under water stress in field-grown grapevines. — Aust. J. Plant Physiol. 26: 421–433, 1999.

    Article  Google Scholar 

  • Fangmeier, A., Chrost, B., Högy, P., Krupinska, K.: CO2 enrichment enhances flag senescence in barley due to greater grain nitrogen sink capacity. — J. exp. Bot. 48: 1835–1841, 2000.

    Google Scholar 

  • Farquhar, G.D., Von Caemmerer, S.: Modelling of photosynthetic response to environmental conditions. — In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed): Encyclopedia of Plant Phsyiology. Physiological Plant Ecology II. Springer-Verlag, Berlin 1982.

    Google Scholar 

  • González-Moro, B., Loureiro-Beldarrain, I., Estavillo, J.M., Duñabeitia, M.K., Muñoz-Rueda, A., González-Murua, C.: Effect of photorespiratory C2 acids on CO2 assimilation, PS2 photochemistry and the xanthophyll cycle in maize. — Photosynth. Res. 78: 161–173, 2003.

    Article  PubMed  Google Scholar 

  • Habash, D.Z., Paul, M.J., Parry, M.A.J., Keys, A.J., Lawlor, D.W.: Increased capacity for photosynthesis in wheat grown at elevated CO2: the relationship between electron transport and carbon metabolism. — Planta 197: 482–489, 1995.

    Article  CAS  Google Scholar 

  • Hibberd, J.M., Richardson, P., Whitbread, R., Farrar, J.F.: Effects of leaf age, basal meristem and infection with powdery mildew on photosynthesis in barley grown in 700 μmol mol−1 CO2. — New Phytol. 134: 317–325, 1996.

    Article  CAS  Google Scholar 

  • Kleemola, J., Peltonen, J., Peltone-Sinio, P.: Apical development and growth of barley under different CO2 and nitrogen regimes. — J. Agron. Crop Sci. 173: 79–92, 1994.

    Article  Google Scholar 

  • Kurasová, I., Kalina, J., Štroch, M., Urban, O., Špunda, V.: Response of photosynthetic apparatus of spring barley (Hordeum vulgare L.) to combined effect of elevated CO2 concentration and different growth irradiance. — Photosynthetica 41: 209–219, 2003.

    Article  Google Scholar 

  • Lambers, H., Chapin III, F.S., Poole, I. (ed.): Plant Physiological Ecology. — Springer-Verlag, New York 1998.

    Google Scholar 

  • Lawlor, D.W.: Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. — Ann. Bot. 89: 871–885, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lawlor, D.W., Mitchell, R.A.C.: The effects of increasing CO2 on crop photosynthesis and productivity: a review of field studies. — Plant Cell Environ. 14: 807–818, 1991.

    Article  Google Scholar 

  • Long, S.P., Drake, B.G.: Effect of long-term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge Scirpus olneyi. — Plant Physiol. 96: 221–226, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Long, S.P., Drake, B.G.: Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations. — In: Baker, N.R., Thomas, H. (ed.): Crop Photosynthesis: Spatial and Temporal Determinations. Pp. 69–95. Elsevier Science, New York 1992.

    Google Scholar 

  • Lopes, M.S., Nogués, S., Araus, J.L.: Nitrogen source and water regime on barley photosynthesis and isotope signature. — Funct. Plant Biol. 31: 995–1003, 2004.

    Article  CAS  Google Scholar 

  • Manderscheid, R., Weigel, H.J.: Do increasing atmospheric concentrations contribute to yield increases of German crops? — J. Agron. Crop Sci. 175: 73–82, 1995.

    Article  Google Scholar 

  • Melgar, J.C., Syvertsen, J.P., Martínez, V., García-Sánchez, F.: Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. — Biol. Plant. 52: 358–390, 2008.

    Article  Google Scholar 

  • Mena-Petite, A., Muñoz-Rueda, A., Lacuesta, M.: Effect of cold storage treatments and transplanting stress on gas exchange, chlorophyll fluorescence and survival under water limiting conditions of Pinus radiata stock-types. — Eur. J. Forest. Res. 124: 73–82, 2005.

    Article  CAS  Google Scholar 

  • Parsons, R., Ogstone, S.A. (ed.): Photosynthesis Assistant Windows Software for Analysis of Photosynthesis. — Dundee Scientific, Dundee 1997.

    Google Scholar 

  • Pérez-López, U., Robredo, A., Lacuesta, M., Sgherri, C., Muñoz-Rueda, A., Navari-Izzo, F., Mena-Petite, A.: The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. — Physiol. Plant. 135: 29–42, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Picon, C., Guehl, J.M., Aussenac, G.: Growth dynamics, transpiration and water use efficiency in Quercus robur plants submitted to elevated CO2 and drought. — Ann. Sci. forest. 53: 431–446, 1996.

    Article  Google Scholar 

  • Polley, H.W., Tischler, C.R., Johnson, H.B., Pennington, R.E.: Growth, water relations, and survival of drought exposed seedlings from six maternal families of honey mesquite (Prosopis glandulosa): response to CO2 enrichment. — Tree Physiol. 19: 359–366, 1999.

    PubMed  Google Scholar 

  • Robredo, A., Pérez-López, U., Sainz de la Maza, H., González-Moro, B., Lacuesta, M., Mena-Petite, A., Muñoz-Rueda, A.: Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effect on photosynthesis. — Environ. exp. Bot. 59: 252–263, 2007.

    Article  CAS  Google Scholar 

  • Rogers, H.H., Sionit, N., Cure, J.D., Smith, H.M., Binham, G.E.: Influence of elevated CO2 on water relations of soybeans. — Plant Physiol. 74: 233–238, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Sánchez, M.C., Domingo, R., Pérez-Pastor, A.: Daily variations in water relations of apricot trees under different irrigation regimes. — Biol. Plant. 51: 735–740, 2007.

    Article  Google Scholar 

  • Sage, R.F.: Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. — Photosynth. Res. 39: 351–368, 1994.

    Article  CAS  Google Scholar 

  • Sánchez-Díaz, M., García, J.L., Antolín, M.C., Araus, J.L.: Effects of soil drought and atmospheric humidity on yield, gas exchange, and stable isotope composition of barley. — Photosynthetica 40: 415–421, 2002.

    Article  Google Scholar 

  • Schindler, C., Lichtenthaler, H.K.: Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day. — J. Plant Physiol. 148: 399–412, 1996.

    CAS  Google Scholar 

  • Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. — In: Schulze, E.D., Martyn, M., Cadwell, M.M. (ed.): Ecophysiology of Photoynthesis. — Springer-Verlag, Berlin 1994.

    Google Scholar 

  • Sicher, R.C.: Responses of nitrogen metabolism in N-sufficient primary barley leaves to plant growth in elevated atmospheric carbon dioxide. — Photosynth. Res. 68: 193–201, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Tezara, W., Driscoll, S., Lawlor, D.W.: Partitioning of photosynthetic electron flow between CO2 assimilation and O2 reduction in sunflower plants under water deficit. — Photosynthetica 46: 127–134, 2008.

    Article  CAS  Google Scholar 

  • Tezara, W., Mitchell, V., Driscoll, S.P., Lawlor, D.W.: Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. — J. exp. Bot. 53: 1781–1791, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ulman, P., Čatský, J., Pospíšilová, J.: Photosynthetic traits in wheat grown under decreased and increased CO2 concentration, and after transfer to natural CO2 concentration. — Biol. Plant. 43: 227–237, 2000.

    Article  Google Scholar 

  • Von Caemmerer, S., Farquhar, G.D.: Some relationship between biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981.

    Article  Google Scholar 

  • Vu, J.C.V., Baker, J.T., Pennanen, A.H., Allen, L.H., Jr., Bowes, G., Boote, K.J.: Elevated CO2 and water deficit effects on photosynthesis, ribulose carboxylase-oxygenase, and carbohydrate metabolism in rice. — Physiol. Plant. 103: 327–339, 1998.

    Article  CAS  Google Scholar 

  • Zhang, S., Dang, Q.L.: Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings. — Tree Physiol. 25: 609–617, 2005.

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by grant MEC PB98-0148, grant GV. PI-1999-52, grant MCyT BFI2002-0391, grant ETORTEK07/44 and grant UPVGIU07/43. A. Robredo was the recipient of a grant from Departamento de Educación, Universidades e Investigación del Gobierno Vasco (Spain). We wish to thank D. Johnson for revising the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mena-Petite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robredo, A., Pérez-López, U., Lacuesta, M. et al. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol Plant 54, 285–292 (2010). https://doi.org/10.1007/s10535-010-0050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-010-0050-y

Additional key words

Navigation