Skip to main content

Advertisement

Log in

Cytogenetic analysis of hybrids derived from wheat and Tritipyrum using conventional staining and genomic in situ hybridization

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The new salt tolerant cereal, Tritipyrum (2n=6x=42, AABBEbEb) offers potential to introduce desirable characters for wheat improvements. This study was aimed to generate a segregating population from Iranian local wheat cultivars (2n=6x=42, AABBDD) and Tritipyrum crosses, study of the meiotic behaviour in F2 hybrids and identification of Eb chromosomes in F3 individuals. Results showed meiotic abnormalities in F2 plants and different pairing frequency in the meiosis among F2 plants. Genomic in situ hybridization revealed that total and Eb chromosome number of F3 seeds ranged from 39 to 45 and 0 to 10, respectively. A significant prevalence of hyper-aneuploidy was observed among F3 genotypes. C-banding patterns identified Eb chromosomes in Tritipyrum, indicating that it also can be useful to study wheat-Tritipyrum derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FISH:

fluorescence in situ hybridization

GISH:

genomic in situ hybridization

References

  • Anugrahwati, D.R., Shepherd, K.W., Verlin, D.C., Zhang, P., Mirzaghaderi, G., Walker, E., Francki, M.G., Dundas, I.S.: Isolation of wheat-rye 1RSr recombinants that break the linkage between the stem rust resistance gene SrR and secalin. — Genome 51: 341–349, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Brasileiro-Vidal, A.C., Brammer, S., Puertas, M.J., Zanatta, A.C., Prestes, A., Moraes-Fernandes, M.I., Guerra, M.: Mitotic instability in wheat × Thinopyrum ponticum derivatives revealed by chromosome counting, nuclear DNA content and histone H3 phosphorylation pattern. — Plant Cell Rep. 24: 172–178, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Jahier J., Cauderon, Y.: Production and cytogenetic analysis of BC1, BC2, and BC3 progenies of an intergeneric hybrid between Triticum aestivum (L.) Thell and tetraploid Agropyron cristatum (L.) Gaertn. — Theor. appl. Genet. 84: 698–703, 1992.

    Google Scholar 

  • Comai, L.: Genetic and epigenetic interactions in allopolyploid plants. — Plant mol. Biol. 43: 387–399, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ellneskog-Staam, P., Merker, A.: Chromosome composition, stability and fertility of alloploids between Triticum turgidum var. carthlicum and Thinopyrum junceiforme. — Hereditas 136: 59–65, 2002.

    Article  PubMed  Google Scholar 

  • Evans, L.E.: Genome construction within the Triticeae I. The synthesis of hexaploids (2n = 42) having chromosomes of Agropyron and Aegilops in addition to the A and B genome of Triticum durum. — Can. J. Genet. Cytol. 6: 19–28, 1964.

    Google Scholar 

  • Fedak, G., Han, F.: Characterization of derivatives from wheat-Thinopyrum wide crosses. — Cytogenet. Genome Res. 109: 360–367, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Francki, M.G., Langridge, P.: The molecular identification of the midget chromosome from the rye genome. — Genome 37: 1056–1061, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Gill, B.S., Friebe, B., Endo, T.R.: Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). — Genome 34: 830–839, 1991.

    Google Scholar 

  • Gorham, J., Forster, B.P., Budrewicz, E., Jones, R.G., Miller, T.E., Law, C.N.: Salt tolerance in the Triticeae: solute accumulation and distribution in an amphidiploid derived from Triticum aestivum cv. Chinese Spring and Thinopyrum bessarabicum. — J. exp. Bot. 37: 1435–1449, 1986.

    Article  CAS  Google Scholar 

  • Hassani, H.S., Caligair, P.D., Miller, T.: The chromosomal assessment of salt tolerant substituted Tritipyrum using genomic fluorescent in situ hybridization (FISH). — Iranian J. Biotechnol. 1: 169–178, 2003.

    CAS  Google Scholar 

  • Hřibová, H., Doleželová, M., Doležel, J.: Localization of BAC clones on mitotic chromosomes of Musa acuminate using fluorescence in situ hybridization. — Biol. Plant. 52: 445–452, 2008.

    Article  Google Scholar 

  • Jauhar, P.P.: Meiosis and fertility of F1 hybrids between hexaploid bread wheat and decaploid tall wheatgrass (Thinopyrum ponticum). — Theor. appl. Genet. 90: 865–871, 1995.

    Google Scholar 

  • Jauhar, P.P., Peterson, T.S.: Cytological analyses of hybrids and derivatives of hybrids between durum wheat and Thinopyrum bessarabicum, using multicolour fluorescent GISH. — Plant Breed. 125: 19–26, 2006.

    Article  Google Scholar 

  • King, I.P., Forster, B.P., Law, C.C., Cant, K.A., Orford, S.E., Gorham, J., Reader, S., Miller, T.E.: Introgression of salttolerance genes from Thinopyrum bessarabicum into wheat. — New Phytol. 137: 75–81, 1997a.

    Article  Google Scholar 

  • King, I.P., Law, C.N., Cant, K.A., Orford, S.E., Reader, S.M., Miller, T.E.: Tritipyrum, a potential new salt-tolerant cereal. — Plant Breed. 116: 127–132, 1997b.

    Article  Google Scholar 

  • Landjeva, S., Newmann, K., Lohwasser, U., Börner, A: Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. — Biol. Plant. 52: 259–266, 2008.

    Article  Google Scholar 

  • Levan, A., Fredga, K., Sandbreg, A.: Nomenclature for centromeric position on chromosome. — Hereditas 52: 201–220, 1964.

    Article  Google Scholar 

  • Mullan, D.J., Platteter, A., Teakle, N.L., Appels, R., Colmer, T.D., Anderson, J.M., Francki, M.G.: EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. — Genome 48: 811–822, 2005.

    PubMed  CAS  Google Scholar 

  • Pallotta, M.A., Graham, R.D., Langridge, P., Sparrow, D.H.B., Barker, S.J.: RFLP mapping of manganese efficiency in barley. — Theor. appl. Genet. 101: 1100–1108, 2000.

    Article  CAS  Google Scholar 

  • Qi, L.L., Friebe, B., Zhang, P., Gill, B.S.: Homoeologous recombination, chromosome engineering and crop improvement. — Chromosome Res. 15: 3–19, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, B. Joiner, B. (ed.): Minitab Handbook. — Duxbury Resource Press, Boston 2001.

    Google Scholar 

  • Schwarzacher, T., Heslop-Harrison, P. (ed.): Practical In Situ Hybridization. — BIOS Scientific Publishers, Oxford 2000.

    Google Scholar 

  • Sharma, H.C., Gill, B.S.: New hybrids between Agropyron and wheat. 2. Production, morphology and cytogenetic analysis of F1 hybrids and backcross derivatives. — Theor. appl. Genet. 66: 111–121, 1983.

    Article  Google Scholar 

  • Silkova, O.G., Dobrovolskaya, O.B., Dubovets, N.I., Adonina, I.G., Kravtsova, L.A., Roeder, M.S., Salina, E.A., Shchapova, A.I., Shumny, V.K.: Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers. — Russ J. Genet. 42: 645–653, 2006.

    Article  CAS  Google Scholar 

  • Wang, R.R., Zhang, X.Y.: Characterization of the translocated chromosome using fluorescence in situ hybridization and random amplified polymorphic DNA on two Triticum aestivum-Thinopyrum intermedium translocation lines resistant to wheat streak mosaic or barley yellow dwarf virus. — Chromosome Res. 4: 583–587, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.Y., Li, X.M., Wang, R.R.C., Cortes, A., Rosas, V., Mujeeb-Kazi, A.: Molecular cytogenetic characterization of Eb-genome chromosomes in Thinopyrum bessarabicum disomic addition lines of bread wheat. — Int. J. Plant Sci. 163: 167–174, 2002.

    Article  CAS  Google Scholar 

  • Zhang, X.Y., Dong, Y.S., Wang, R.R.C.: Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis and RAPD. — Genome 39: 1062–1071, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Ministry of Science and Technology of Iran. John Innes Centre, UK is appreciated for providing of Tritipyrum materials. The first author acknowledges Dr. M.G. Francki, Department of Agriculture and Food Western Australia, South Perth, WA 6152; State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia, for his technical training. We acknowledge Dr. J. Doležel, Institute of Experimental Botany, Olomouc, Czech Republic, for his review on the manuscript and helpful idea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Karimzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzaghaderi, G., Karimzadeh, G., Hassani, H.S. et al. Cytogenetic analysis of hybrids derived from wheat and Tritipyrum using conventional staining and genomic in situ hybridization. Biol Plant 54, 252–258 (2010). https://doi.org/10.1007/s10535-010-0044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-010-0044-9

Additional key words

Navigation