Skip to main content
Log in

Nitric oxide alleviates Fe deficiency-induced stress in Solanum nigrum

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The possible involvement of nitric oxide in response of Solanum nigrum seedlings to Fe deficiency was investigated. Iron deficiency resulted in decreased shoot height and chlorophyll content and increased proliferation of root hairs and H2O2, K+ and Ca2+ content. NO donor S-nitrosoglutathione (GSNO) was effective in preventing Fe deficiency-induced increase in content of H2O2 and the ion uptake. The protective effects of GSNO were reversed by cPTIO, an NO scavenger, and tungstate, a nitrate reductase (NR) inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

cPTIO:

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

DAB:

3-diaminobenzidine

DAF-2 DA:

4,5-diaminofluorescein diacetate

GSNO:

S-nitrosoglutathione

L-NAME:

NG-nitro-L-Arg-methyl ester

NR:

nitrate reductase

NOS:

nitric oxide synthase

ROS:

reactive oxygen species

TCA:

trichloroacetic acid

References

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24:1–15, 1949.

    Article  CAS  PubMed  Google Scholar 

  • Beligni, M.V., Lamattina, L.: Nitric oxide in plants: the history is just beginning. — Plant Cell Environ. 24: 267–278, 2001.

    Article  CAS  Google Scholar 

  • Bethke, P.C., Badger, M.R., Jones, R.L.: Apoplastic synthesis of nitric oxide by plant tissues. — Plant Cell 16: 332–341, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Curie, C., Briat, J.F.: Iron transport and signaling in plants. — Annu. Rev. Plant Biol. 54: 183–206, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Desikan, R., Griffiths, R., Hancock, J., Neill, S.: A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is recquired for abscisic acid-induced stomatal closure in Arabidopsis thaliana. — Proc. nat. Acad. Sci. USA 99: 16314–16318, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M., Beligni, M.V., Lamattina, L.: Nitric oxide improves internal iron availability in plants. — Plant Physiol. 130: 1852–1859, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M., Lamattina, L.: Nitric oxide and iron in plants: an emerging and converging story. — Trends Plant Sci. 10: 4–8, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M., Lamattina, L.: Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. — Plant J. 52: 949–960, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Guo, F.Q., Okamoto, M., Crawford, N.M.: Identification of a plant nitric oxide synthase gene involved in hormonal signaling. — Science 302: 100–103, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Khan, J.S., Hanson, J.B.: The effect of calcium on potassium accumulation in corn and soybean roots. — Plant Physiol. 32: 312–316, 1957.

    Article  Google Scholar 

  • Kolbert, Z., Bartha, B., Erdei, L.: Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordial. — J. Plant Physiol. 165: 967–975, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Leshem, Y.Y., Wills, R.B.H., Ku, V.V.V.: Evidence for the function of the free radical gas — nitric oxide (NO·) — as an endogenous maturation and senescence regulating factor in higher plants. — Plant Physiol. Biochem. 36: 825–833, 1998.

    Article  CAS  Google Scholar 

  • Libourel, I.G.L., Bethke, P.C., De Michele, R., Jones, R.L.: Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. — Planta 223: 813–820, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Carrion, A.I., Castellano, R., Rosales, M.A., Ruiz, J.M., Romero, L.: Role of nitric oxide under saline stress: implications on proline metabolism. — Biol. Plant. 52: 587–591, 2008.

    Article  CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bio-assays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Navarre, D.A., Windehenne, D., Durner, J., Noad, R., Klessig, D.F.: Nitric oxide modulates the activity of tobacco aconitase. — Plant Physiol. 122: 573–582, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Neill, S.J., Desikan, R., Clarke, A., Hancock, J.T.: Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. — Plant Physiol. 128: 13–16, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Ranieri, A., Castagna, A., Baldan, B., Soldatini, G.F.: Iron deficiency differently affects peroxidase isoforms in sunflower. — J. exp. Bot. 52: 25–35, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Sun, B.T., Jing, Y., Chen, K.M., Song, L.L., Chen, F.J., Zhang, L.X.: Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). — J. Plant Physiol. 164: 536–543, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Velikova, V., Yordanov, I., Edreva, A.: Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyammines. — Plant Sci. 151: 59–66, 2000.

    Article  CAS  Google Scholar 

  • Wendehenne, D., Durner, J., Klessig, D.F.: Nitric oxide: a new player in plant signalling and defence response. — Curr. Opin. Plant Biol. 7: 449–455, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Wang, W.Y., Yin, H.X., Mi, Q., Sun, H.: Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. — Plant Soil, in press, 2009.

  • Zaharieva, T.B., Gogorcena, Y., Abadia, J.: Dynamics of metabolic responses to iron deficiency in sugar beet roots. — Plant Sci. 166: 1045–1050, 2004.

    Article  CAS  Google Scholar 

  • Zhang, Y.Y., Wang, L.L., Liu, Y.L., Zhang, Q., Wei, Q.P., Zhang, W.H.: Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. — Planta 224: 545–555, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J.K., Liu, J.P., Xiong, L.M.: Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. — Plant Cell 10: 1181–1191, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Zottini, M., Formentin, E., Scattolin, M., Carimi, F., Lo Schiavo, F., Terzi, M.: Nitric oxide affects plant mitochondrial functionality in vivo. — FEBS Lett. 515: 75–78, 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Xu or W. Y. Wang.

Additional information

Acknowledgements: We thank Dr. Dezhu Li of Kunming Institute of Botany, Chinese Academy of Sciences for providing the S. nigrum seeds. The authors truly appreciate the time that Dr. Jana Pospíšilová and the anonymous reviewers spent on helping to clarify the confusions and modify the paper. The research was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant no. 0707013603)) and the National Major Special Project on New Varieties Cultivation for Transgenic Organisms (Grant no. 2009ZX08009-130B).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Yin, H.X., Liu, X.J. et al. Nitric oxide alleviates Fe deficiency-induced stress in Solanum nigrum . Biol Plant 53, 784–788 (2009). https://doi.org/10.1007/s10535-009-0144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0144-6

Additional key words

Navigation