Skip to main content
Log in

Responses of photosynthetic parameters of Mikania micrantha and Chromolaena odorata to contrasting irradiance and soil moisture

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Photosynthetic parameters were measured in two invasive weeds, Mikania micrantha and Chromolaena odorata, grown in soil under full, medium, and low irradiance and full, medium, and low water supply. Both species showed significantly higher net photosynthetic rate, quantum yield of PS 2 photochemistry and photochemical quenching coefficient under high than low irradiance. For M. micrantha, low irradiance caused decreased chlorophyll content (Chl), Chl a/b ratio and maximum photochemical efficiency of PS 2 (Fv/Fm), while drought decreased Chl content and Fv/Fm and increased nonphotochemical quenching (NPQ). However, these parameters were much less affected in C. odorata except that Chl content and NPQ slightly increased under drought and high irradiance. High irradiance increased xanthophyll pools in both species, especially M. micrantha under combination with drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

antheraxanthin

FC:

field water capacity

FI:

full irradiance

Fv/Fm :

maximum photochemical efficiency of PS 2

FW:

full water

LI:

low irradiance

LW:

low water

MI:

medium irradiance

MW:

medium water

NPQ:

nonphotochemical quenching coefficient

PN :

net photosynthetic rate

qP:

photochemical quenching coefficient

V:

violaxanthin

Z:

zeaxanthin

ΦPS2 :

quantum yield of PS 2 photochemistry

References

  • Adams, W.W. III., Demmig-Adams, B., Logan, B.A., Baker, D.H., Osmond, C.B.: Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilas australis, growing in the understory of an open Eucalyptus forest. — Plant Cell Environ. 22: 125–136, 1999.

    Article  CAS  Google Scholar 

  • Chow, W.S.: Photoprotection and photoinhibition. — In: Bittar, E.E., Barber, J. (ed.): Advances in Molecular and Cell Biology: Molecular Process of Photosynthesis. Vol. X. Pp. 151–196. JAI Press, Greenwich 1994.

    Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III.: Photoprotection and other responses of plants to high light stress. — Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599–626, 1992.

    Article  CAS  Google Scholar 

  • Giardi, M.T., Cona, A., Geiken, B., Kucera, T., Masojidek, J., Mattoo, A.K.: Long-term drought stress induces structural and functional reorganization of photosystem II. — Planta 199: 118–125, 1996.

    Article  CAS  Google Scholar 

  • Gilmore, A.M.: Mechanistic aspects of xanthophyll cycle-dependant photoprotection in higher plant chloroplast and leaves. — Physiol. Plant. 99: 118–125, 1997.

    Article  Google Scholar 

  • Gilmore, A.M., Yamamoto, H.Y.: Resolution of lutein and zeaxanthin using a nonendcapped, lightly carbon-loaded C-18 high-performance liquid chromatographic column. — J. Chromatography 543: 137–145, 1991.

    Article  CAS  Google Scholar 

  • Gimenez, C., Mitchell, V.J., Lawlor, D.W.: Regulation of photosynthetic rate of two sunflower hybrids under water stress. — Plant Physiol. 96: 635–643, 1992.

    Google Scholar 

  • Golan, T., Müller-Moulé, P., Niyogi, K.K.: Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. — Plant Cell Environ. 29: 879–887, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Holm, L.G., Plucknett, D.L., Pancho, J.V., Herberger, J.P. (ed.): The World’s Worst Weeds: Distribution and Biology. — University Press of Hawaii, Honolulu 1977.

    Google Scholar 

  • Liao, F.Y., Xie, Y., He, P., Fan, Y.M.: The effect of different light intensity on the growth and photosystem of Mikania micrantha Kunth. — Life Sci Res. 7: 355–359, 2003. [In Chin.]

    CAS  Google Scholar 

  • Lichtenthaler, H.K., Buschmann, C., Döll, M., Fietz, H.J., Bach, T., Kozel, U., Meier, D., Rahmsdorf, U.: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. — Photosynth Res. 2: 115–141, 1981.

    Article  CAS  Google Scholar 

  • Lin, Z.F., Li, S.S., Lin, G.Z., Sun, G.C., Guo, J.Y.: [Superoxide dismutase activity and liquid peroxidation in relation to senescence of rice leaves]. — Acta bot. sin. 26: 605–615, 1984. [In Chin.]

    CAS  Google Scholar 

  • Lu, C.M., Qiu, N.W., Lu, Q.T., Wang, B.S., Kuang, T.Y.: PSII photochemistry, thermal energy dissipation, and the xanthopyhll cycle in Kalanchoë daigremontiana exposed to a combination of water stress and high light. — Physiol. Plant. 118: 173–182, 2003.

    Article  CAS  Google Scholar 

  • Melgar, J.C., Syvertsen, J.P., Martínez, V., García-Sánchez, F.: Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. — Biol. Plant. 52: 385–390, 2008.

    Article  CAS  Google Scholar 

  • Pogson, B., Niyogi, K.K., Björkman, O., Dellapenna, D.: Altered xanthophylls compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. — Proc. nat. Acad. Sci. USA. 95: 13324–13329, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, N.W., Lu, Q.T., Lu, C.M.: Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. — New Phytol. 159: 479–486, 2003.

    Article  CAS  Google Scholar 

  • Schiefthaler, U., Russell, A.W., Bolhàr-Nordenkampf, H.R., Critchley, C.: Photoregulation and photodamage in Schefflera arboricola leaves adapted to different light environments. — Aust. J. Plant Physiol. 26: 485–494, 1997.

    Article  Google Scholar 

  • Souza, R.P., Machado, E.C., Silva, J.A.B., Lagpa, A.M.M.A., Silveira, J.A.G.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. — Environ. exp. Bot. 51: 45–56, 2004.

    Article  CAS  Google Scholar 

  • Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.

    Article  Google Scholar 

  • Wang, J.F., Feng, Y.L., Li, Z.: Acclimation of photosynthesis to growth light intensity in Chromolaena odorata L. and Gynura sp. — J. Plant Physiol. mol Biol. 29: 542–548, 2003.

    Google Scholar 

  • Yu, D.J., Kim, S.J., Lee, H.J.: Stomatal and non-stomatal limitations to photosynthesis in field-grown grapevine cultivars. — Biol. Plant. 53: 133–137, 2009.

    Article  CAS  Google Scholar 

  • Zhang, L.L., Wen, D.Z.: Structural and physiological responses of two invasive weeds Mikania micrantha and Chromolaena odorata to contrasting light and soil water conditions. — J. Plant Res. 122: 69–79, 2009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Z. Wen.

Additional information

Acknowledgements: We thank Prof. Zhi-Fang Lin, Prof. Han-Hui Kuang, and two anonymous reviewers for critical comments on earlier version of this manuscript. The study was funded by National Natural Science Foundation of China (No. 30630015) and the Pear River Delta Urban Forest and the Environment Research Program of SCBG (200603).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L.L., Wen, D.Z. & Fu, S.L. Responses of photosynthetic parameters of Mikania micrantha and Chromolaena odorata to contrasting irradiance and soil moisture. Biol Plant 53, 517–522 (2009). https://doi.org/10.1007/s10535-009-0093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0093-0

Additional key words

Navigation