Skip to main content
Log in

Cadmium uptake, localization and detoxification in Zea mays

  • Published:
Biologia Plantarum

Abstract

Cadmium uptake, translocation and localization in maize roots and shoots at the tissue and cellular level were investigated. Metal accumulation in plant organs as well as symptoms of Cd toxicity were closely correlated with an increase in Cd concentration applied (5 − 300 μM). Most of the metal taken up was retained in roots, mainly inside the cells of endodermis, pericycle and central cylinder parenchyma. Accumulation of phytochelatins and related peptides also depended on Cd concentration in the nutrient solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDAX:

energy dispersive X-ray microanalysis

HPLC:

high performance liquid chromatography

PC:

phytochelatins

References

  • Clemens, S., Simm, C.: Schizosaccharomyces pombe as a model for metal homeostasis in plant cells: the phytochelatin-dependent pathway is the main cadmium detoxification mechanism.-New Phytol. 159: 323–330, 2003.

    CAS  Google Scholar 

  • Doncheva, S.: Copper-induced alterations in structure and proliferation of maize root meristem cells.-J. Plant Physiol. 153: 482–487, 1998.

    CAS  Google Scholar 

  • Ernst, W.H.O.: Biochemical aspects of cadmium in plants.-In: Nriagu, J.O. (ed.): Cadmium in the Environment, Part I: Ecological Cycling. Pp. 639–653. InterScience Publ., John Wiley & Sons, New York-Chichester-Brisbane-Toronto 1980.

    Google Scholar 

  • Ernst, W.H.O., Verkleij, J.A.C., Schat, H.: Metal tolerance in plants.-Acta bot. neerl. 41: 229–248, 1992.

    CAS  Google Scholar 

  • Florijn, P.J., Van Beusichem, M.L.: Uptake and distribution of cadmium in maize inbred lines.-Plant Soil 150: 25–32, 1993.

    CAS  Google Scholar 

  • Khan, D.H., Duckett, J.G., Frankland, B. Kirkham, J.B.: An X-ray microanalytical study of the distribution of cadmium in roots of Zea mays L.-J. Plant Physiol. 115: 19–28, 1984.

    CAS  Google Scholar 

  • Krupa, Z., Baszyński, T.: Some aspects of heavy metal toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reactions.-Acta Physiol. Plant. 17: 177–190, 1995.

    CAS  Google Scholar 

  • Kubota, H., Sato, K., Yamada, T., Maitani, T.: Phytochelatin homolog induced in hairy roots of horseradish.-Phytochemistry 53: 239–245, 2000.

    PubMed  CAS  Google Scholar 

  • Küpper, H., Lombi, E., Zhao, F.-J., McGrath, S.P.: Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri.-Planta 212: 75–84, 2000.

    PubMed  Google Scholar 

  • Lagriffoul, A., Mocquot, B., Mench, M., Vangronsveld, J.: Cadmium toxicity effects on growth, mineral and chlorophyll contents and activities of stress related enzymes in young maize plants (Zea mays L.).-Plant Soil 200: 241–250, 1998.

    CAS  Google Scholar 

  • Lozano-Rodríguez, E., Hernandez, L.E., Bonay, P., Carpena-Ruiz, R.O.: Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances.-J. exp. Bot. 48: 123–128, 1997.

    Google Scholar 

  • Lunáčková, L., Šottníková, A., Masarovičová, E., Lux, A., Streško, V.: Comparison of cadmium effect on willow and poplar in response to different cultivation conditions.-Biol. Plant. 47: 403–411, 2003/4.

    Google Scholar 

  • Meuwly, P., Rauser, W.E.: Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium.-Plant Physiol. 99: 8–15, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Meuwly, P., Thibault, P., Schwan, A.L., Rauser, W.E.: Three families of thiol peptides are induced by cadmium in maize.-Plant J. 7: 391–400, 1995.

    PubMed  CAS  Google Scholar 

  • Ortiz, D.F., Ruscitti, T., McCue, K.F., Ow, D.W.: Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein.-J. biol. Chem. 270: 4721–4728, 1995.

    PubMed  CAS  Google Scholar 

  • Prasad, M.N.V.: Cadmium toxicity and tolerance in vascular plants.-Environ. exp. Bot. 35: 525–545, 1995.

    CAS  Google Scholar 

  • Punz, W.F., Sieghardt, H.: The response of roots of herbaceous plant species to heavy metals.-Environ. exp. Bot. 33: 85–98, 1993.

    CAS  Google Scholar 

  • Rauser, W.E.: Phytochelatins and related peptides. Structure, biosynthesis, and function.-Plant Physiol. 109: 1141–1149, 1995.

    PubMed  CAS  Google Scholar 

  • Rauser, W.E.: Structure and function of metal chelators produced by plants.-Cell Biochem. Biophys. 31: 19–48, 1999.

    PubMed  CAS  Google Scholar 

  • Rauser, W.E.: Phytochelatin-based complexes bind various amounts of cadmium in maize seedlings depending on the time of exposure, the concentration of cadmium and the tissue.-New Phytol. 158: 269–278, 2003.

    CAS  Google Scholar 

  • Rauser, W.E., Ackerley, C.A.: Localization of cadmium in granules within differentiating and mature root cells.-Can. J. Bot. 65: 643–646, 1987.

    Article  CAS  Google Scholar 

  • Rauser, W.E., Meuwly, P.: Retention of cadmium in roots of maize seedlings.-Plant Physiol. 109: 195–202, 1995.

    PubMed  CAS  Google Scholar 

  • Salt, D.E., Prince, R.C., Pickering, I.J., Raskin, I.: Mechanisms of cadmium mobility and accumulation in Indian mustard.-Plant Physiol. 109: 1427–1433, 1995.

    PubMed  CAS  Google Scholar 

  • Sanitá di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants.-Environ. exp. Bot. 41: 105–130, 1999.

    Google Scholar 

  • Seregin, I.V., Ivanov, V.B.: Histochemical investigation of cadmium and lead distribution in plants.-Russ. J. Plant Physiol. 44: 791–796, 1997.

    CAS  Google Scholar 

  • Siedlecka, A., Tukiendorf, A., Skárzyńska-Polit, E., Maksymiec, W., Wójcik, M., Baszyń ski, T., Krupa, Z.: Angiosperms (Asteraceae, Convolvulaceae, Fabaceae and Poaceae; other than Brassicaceae).-In: Prasad, M.N.V. (ed.): Metals in the Environment: Analysis by Biodiversity. Pp. 172–217. Marcel Dekker, New York 2001.

    Google Scholar 

  • Tukiendorf, A., Rauser, W.E.: Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium.-Plant Sci. 70: 155–166, 1990.

    Google Scholar 

  • Vázquez, M.D., Barceló, J., Poschenrieder, C., Mádico, J., Hatton, P., Baker, A.J.M., Cope, G.H.: Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can accumulate both metals.-J. Plant Physiol. 140: 350–355, 1992a.

    Google Scholar 

  • Vázquez, M.D., Poschenrieder, C., Barceló, J.: Ultrastructural effects and localization of low cadmium concentrations in bean roots.-New Phytol. 120: 215–226, 1992b.

    Google Scholar 

  • Verkleij, J.A.C., Schat, H.: Mechanisms of metal tolerance in higher plants.-In: Shaw, A.J. (ed.): Heavy Metal Tolerance in Plants: Evolutionary Aspects. Pp. 179–193. CRC Press, Boca Raton 1990.

    Google Scholar 

  • Wagner, G.J.: Accumulation of cadmium in crop plants and its consequences to human health.-Adv. Agron. 51: 173–212, 1993.

    Article  CAS  Google Scholar 

  • Wójcik, M., Tukiendorf, A.: Cd-tolerance of maize, rye and wheat seedlings.-Acta Physiol. Plant. 21: 99–107, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wójcik, M., Tukiendorf, A. Cadmium uptake, localization and detoxification in Zea mays . Biol Plant 49, 237–245 (2005). https://doi.org/10.1007/s10535-005-7245-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-005-7245-7

Additional key words

Navigation