Skip to main content
Log in

Genomic insight into iron acquisition by sulfate-reducing bacteria in microaerophilic environments

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Historically, sulfate-reducing bacteria (SRB) have been considered to be strict anaerobes, but reports in the past couple of decades indicate that SRB tolerate exposure to O2 and can even grow in aerophilic environments. With the transition from anaerobic to microaerophilic conditions, the uptake of Fe(III) from the environment by SRB would become important. In evaluating the metabolic capability for the uptake of iron, the genomes of 26 SRB, representing eight families, were examined. All SRB reviewed carry genes (feoA and feoB) for the ferrous uptake system to transport Fe(II) across the plasma membrane into the cytoplasm. In addition, all of the SRB genomes examined have putative genes for a canonical ABC transporter that may transport ferric siderophore or ferric chelated species from the environment. Gram-negative SRB have additional machinery to import ferric siderophores and ferric chelated species since they have the TonB system that can work alongside any of the outer membrane porins annotated in the genome. Included in this review is the discussion that SRB may use the putative siderophore uptake system to import metals other than iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdollahi H, Wimpenny J (1990) Effects of oxygen on the growth of Desulfovibrio desulfuricans. Microbiol 136:1025–1030

    CAS  Google Scholar 

  • Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bacro VN (2021) Structure, assembly, and function of tripartite efflux and type 1 secretion systems in gram-negative bacteria. Chem Rev 121:5479–5596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Avidan O, Kaltageser E, Pechatnikov I, Wexler HM, Shainskaya A, Nitzan Y (2008) Isolation and characterization of porins from Desulfovibrio piger and Bilophila wadsworthia: structure and gene. Arch Microbiol 190(6):641–650

    Article  CAS  PubMed  Google Scholar 

  • Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98

    Article  CAS  PubMed  Google Scholar 

  • Barton LL, Fauque GD (2022) Sulfate-reducing bacteria and archaea. Springer, Cham, p 564

    Book  Google Scholar 

  • Bender KS, Yen HC, Hemme CL, Yang Z, He Z, He Q, Zhou J, Huang KH, Alm EJ, Hazen TC, Arkin AP, Wall JD (2007) Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 73(17):5389–5400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaabjerg V, Finster K (1998) Sulphate reduction associated with roots and rhizomes of the marine macrophyte Zostera marina. Aquatic Microbial Ecol 5:311–314

    Article  Google Scholar 

  • Butaitė E, Baumgartner M, Wyder S, Kümmerli R (2017) Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun 8(1):414

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell AG, Campbell JH, Schwientek P, Woyke T, Sczyrba A, Allman S, Beall CJ, Griffen A, Leys E, Podar M (2013) Multiple single-cell genomes provide insight into functions of uncultured Deltaproteobacteria in the human oral cavity. PLoS ONE 8(3):e59361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251:1471–1473

    Article  CAS  PubMed  Google Scholar 

  • Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo–transport of ferrous iron into bacteria. Biometals 19:143–157

    Article  CAS  PubMed  Google Scholar 

  • Celis LB, Villa-Gómez D, Alpuche-Solís AG, Ortega-Morales BO, Razo-Flores E (2009) Characterization of sulfate-reducing bacteria dominated surface communities during start-up of a down-flow fluidized bed reactor. J Ind Microbiol Biotechnol 6(1):111–121

    Article  Google Scholar 

  • Cypionka H (2000) Oxygen respiration by desulfovibrio species. Ann Rev Microbiol 54:827–848

    Article  CAS  Google Scholar 

  • da Silva ESC, Feres M, Figueiredo LC, Shibli JA, Ramiro FS, Faven M (2014) Microbiological diversity of peri-implantitis biofilm by Sanger sequencing. Clin Oral Implants Res 25:1192–1199

    Article  PubMed  Google Scholar 

  • Dannenberg S, Kroder M, Dilling W, Cypionka H (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch Microbiol 158:93–99

    Article  CAS  Google Scholar 

  • Deng X, Okamoto A (2017) Energy acquisition via electron uptake by the sulfate-reducing bacterium Desulfovibrio ferrophilus IS5. J Jpn Soc Extremophil 16:67–75

    Google Scholar 

  • Deng X, Dohmae N, Nealson KH, Hashimoto K, Okamoto A (2018) Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Sci Adv 4:eaao5682

  • Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71:123–128

    CAS  Google Scholar 

  • Dolla A, Fournier M, Dermoun Z (2006) Oxygen defense in sulfate-reducing bacteria. J Biotechnol 126:87–100

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo MC, Lobo SA, Carita JN, Nobre LS, Saraiva LM (2012) Bacterioferritin protects the anaerobe Desulfovibrio vulgaris Hildenborough against oxygen. Anaerobe 18(4):454–458

    Article  CAS  PubMed  Google Scholar 

  • Furrer JL, Sanders DN, Hook-Barnard IG, McIntosh MA (2002) Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 44:1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Glass JB, Chen S, Dawson KS, Horton DR, Vogt S, Ingall ED, Twining BS, Orphan VJ (2018) Trace metal imaging of sulfate-reducing bacteria and methanogenic archaea at single-cell resolution by synchrotron X-Ray fluorescence imaging. Geomicrobiol J 35:81–89

    Article  CAS  Google Scholar 

  • Gibson GR, Macfarlane GT, Cummings JH (1993) Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol Ecol 12:117125

    Article  Google Scholar 

  • Guan HH, Hsieh YC, Lin PJ, Huang YC, Yoshimura M, Chen LY, Chen SK, Chuankhayan P, Lin CC, Chen NC, Nakagawa A, Chan SI, Chen CJ (2018) Structural insights into the electron/proton transfer pathways in the quinol:fumarate reductase from Desulfovibrio gigas. Sci Rep 8(1):14935

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallgren J, Tsirigos KD, Damgaard Pedersen M, Almagro Armenteros JJ, Marcatili P, Nielsen H, Krogh A, Winther O (2022) DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. BioRxiv. https://doi.org/10.1101/2022.04.08.487609

    Article  Google Scholar 

  • Hantke K (1987) Ferrous iron transport mutants in Escherichia coli K-12. FEMS Microbiol Lett 44:53–57

    Article  CAS  Google Scholar 

  • Hantke K, Braun V (2000) The art of keeping low and high iron concentrations in balance. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, D.C., pp 275–288

    Google Scholar 

  • Hemme CL, Wall JD (2004) Genomic insights into gene regulation of Desulfovibrio vulgaris Hildenborough. OMICS 8:43–55

    Article  CAS  PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Hofmann M, Heine T, Malik L, Hofmann S, Joffroy K, Senges CHR, Bandow JE, Tischler D (2021) Screening for microbial metal-chelating siderophores for the removal of metal ions from solutions. Microorganisms 9(1):111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia W, Whitehead RN, Griffiths L, Dawson C, Bai H, Waring RH, Ramsden DB, Hunter JO, Cauchi M, Bessant C, Fowler DP, Walton C, Turner C, Cole JA (2012) Diversity and distribution of sulfate-reducing bacteria in human faeces from healthy subjects and patients with inflammatory bowel disease. FEMS Immunol Med Microbiol 65:55–68

    Article  CAS  PubMed  Google Scholar 

  • Johnson MS, Zhulin IB, Gapuzan ER, Taylor BL (1997) Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J Bacteriol 179:5598–5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jørgensen BB, Bak F (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl Environ Microbiol 57:847–856

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer J, Özkaya Ö, Kümmerli R (2020) Bacterial siderophores in community and host interactions. Nat Rev Microbiol 18:152–163

    Article  CAS  PubMed  Google Scholar 

  • Krekeler D, Sigalevich P, Teske A, Cypionka H, Cohen Y (1997) A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai) Desulfovibrio Oxyclinae sp. nov. Arch Microbiol 167:369–375

    Article  CAS  Google Scholar 

  • Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol 19:139–149

    Article  CAS  Google Scholar 

  • Küsel K, Pinkart HC, Drake HL, Devereux R (1995) Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl Environ Microbiol 65:5117–5123

    Article  Google Scholar 

  • Kushkevych IV (2017) Intestinal sulfate-reducing bacteria. Masarky University, Brno, Czech Republic

    Google Scholar 

  • Lamrabet O, Pieulle L, Aubert C, Mouhamar F, Stocker P, Dolla A, Brasseur G (2011) Oxygen reduction in the strict anaerobe Desulfovibrio vulgaris Hildenborough: characterization of two membrane-bound oxygen reductases. Microbiol 157:2720–2732

    Article  CAS  Google Scholar 

  • Lau CK, Krewulak KD, Vogel H (2016) Bacterial ferrous iron transport. Feo Syst FEMS Microbiol Rev 40:273–298

    Article  CAS  Google Scholar 

  • Lefèvre CT, Howse PA, Schmidt ML, Sabaty M, Menguy N, Luther GW III, Bazylinski DA (2016) Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium. Environ Microbiol Rep 8:1003–1015

    Article  PubMed  Google Scholar 

  • Lemos RS, Gomes CM, Santana M, LeGall J, Xavier AV, Teixeira M (2001) The “strict” anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett 496:40–43

    Article  CAS  PubMed  Google Scholar 

  • Lobo SAL, Melo AMP, Carita JN, Teixeira M, Saraiva LM (2007) The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels. FEBS Lett 581:433–436

    Article  CAS  PubMed  Google Scholar 

  • Macedo S, Mitchell EP, Matias PM, Romao CV, Liu MY, Xavier AV, Lindley PF, Le Gall J, Teixeira M, Carrondo MA (2002) Bacterioferritin from Desulfovibrio desulfuricans: the identification of the ferroxidase centre. Acta Cryst A 58:C118

    Article  Google Scholar 

  • Macedo S, Romão CV, Mitchell E, Matias PM, Liu MY, Xavier AV, LeGall J, Teixeira M, Lindley P, Carrondo MA (2003) The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans. Nat Struct Biol 10:285–290

    Article  CAS  PubMed  Google Scholar 

  • Marschall C, Frenzel P, Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159:168–173

    Article  CAS  Google Scholar 

  • Minz D, Fishbain S, Green SJ, Muyzer G, Cohen Y, Rittmann BE, Stahl DA (1999) Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl Environ Microbiol 65:4659–4665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais-Silva FO, Rezende AM, Pimentel C, Santos CI, Clemente C, Varela-Raposo A et al (2014) Genome sequence of the model sulfate reducer Desulfovibrio gigas: a comparative analysis within the Desulfovibrio genus. Microbiol Open 3:513–530

    Article  CAS  Google Scholar 

  • Moura JJ, Costa C, Liu MY, Moura I, LeGall J (1991) Structural and functional approach toward a classification of the complex cytochrome c system found in sulfate-reducing bacteria. Biochim Biophys Acta 1058:61–66

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Nielsen LB, Finster K, Welsh DT, Donelly A, Herbert RA, de Wit R, Lomstein BA (2001) Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows. Environ Microbiol 3:63–71

    Article  CAS  PubMed  Google Scholar 

  • Niessen N, Soppa J (2020) Regulated iron siderophore production of the Halophilic Archaeon Haloferax volcanii. Biomolecules 10:1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okabe S, Ito T, Sugita K, Satoh H (2005) Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms. Appl Environ Microbiol 71:2520–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio H, Martínez V, Nieto PA, Holmes DS, Quatrini R (2008) Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiol 8:203–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozenberger BA, Nahlik MS, McIntosh MA (1987) Genetic organization of multiple fep genes encoding ferric enterobactin transport functions in Escherichia coli. J Bacteriol 169:3638–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pado R, Pawłowska-Ćwięk L (2005) The uptake and accumulation of iron by the intestinal bacterium Desulfotomaculum acetoxidans DSM 771. Folia Biol 53:79–81

    Article  CAS  Google Scholar 

  • Pereira IAC, Ramos AR, Grein F, Marques MC, Marques da Silva S, Venceslau SS (2011) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan HC, Blackall LL, Wade SA (2021) Effect of multispecies microbial consortia on microbially influenced corrosion of carbon steel. Corros Mater Degrad 2:133–149

    Article  Google Scholar 

  • Pommeret A, Ricci F, Schubert K (2022) Critical raw materials for the energy transition. Eur Econ Rev 141:103991

    Article  Google Scholar 

  • Quatrini R, Jedlicki E, Holmes DS (2005) Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotech 32:606–614

    Article  CAS  Google Scholar 

  • Ramel F, Amrani A, Pieulle L, Lamrabet O, Voordouw G, Seddiki N et al (2013) Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation. Microbiology 159:2663–2673

    Article  CAS  PubMed  Google Scholar 

  • Ran S, Mu C, Zhu W (2019) Diversity and community pattern of sulfate-reducing bacteria in piglet gut. J Anim Sci Biotechnol 10:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodionov DA, Dubchak I, Arkin A, Alm A, Gelfand MS (2004) Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria. Genome Biol 5:R90

    Article  PubMed  PubMed Central  Google Scholar 

  • Romão C, Louro R, Timkovich R, Lübben M, Liu MY, Legall J, Xavier AV, Teixeira M (2000) Iron-coproporphyrin III is a natural cofactor in bacterioferritin from the anaerobic bacterium Desulfovibrio desulfuricans. FEBS Lett 480:213–216

    Article  PubMed  Google Scholar 

  • Santegoeds CM, Ferdelman TG, Muyzer G, de Beer D (1998) Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl Environ Microbiol 64:3731–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos H, Fareleira P, Xavier AV, Chen L, Liu MY, LeGall J (1993) Aerobic metabolism of carbon reserves by the “obligate anaerobe” Desulfovibrio gigas. Biochem Biophys Res Commun 195:551–557

    Article  CAS  PubMed  Google Scholar 

  • Sass H, Cypionka H (2007) Response of sulphate-reducing bacteria to oxygen. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria - environmental and engineered systems. Cambridge University Press, Cambridge, pp 167–184

    Chapter  Google Scholar 

  • Sass H, Cypionka H, Babenzien H-D (1997) Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiol Ecol 22:245–255

    Article  CAS  Google Scholar 

  • Sass AM, Eschemann A, Kühl M, Thar R, Sass H, Cypionka H (2002) Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiol Ecol 40:47–54

    CAS  PubMed  Google Scholar 

  • Schryvers AB, Stojiljkovic I (1999) Iron acquisition systems in the pathogenic Neisseria. Mol Microbiol 32:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Sigalevich P, Cohen Y (2000) Oxygen-dependent growth of the sulfate-reducing bacterium Desulfovibrio oxyclinae in coculture with Marinobacter sp. strain MB in an aerated sulfate-depleted chemostat. Appl Environ Microbiol 66:5019–5023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith M, Bardiau M, Brennan R, Burgess H, Caplin J, Santanu Ray S, Urios T (2019) Accelerated low water corrosion: the microbial sulfur cycle in microcosm. NPJ Mater Degrad 3:37

    Article  Google Scholar 

  • Staicu LC, Barton LL (2021) Selenium respiration in anaerobic bacteria: does energy generation pay off? J Inorg Biochem 222:111509

    Article  CAS  PubMed  Google Scholar 

  • Staicu LC, Stolz JF (2021) Microbes vs. metals: harvest and recycle. FEMS Microbiol Ecol 97(5):fiab056

    Article  CAS  PubMed  Google Scholar 

  • Staicu LC, Wojtowicz PJ, Bargano D, Pósfai M, Molnar Z, Ruiz-Agudo E, Gallego JL (2021) Bioremediation of a polymetallic, arsenic-dominated reverse osmosis reject stream. Lett Appl Microbiol. https://doi.org/10.1111/lam.13578

    Article  PubMed  Google Scholar 

  • Staicu LC, Wojtowicz PJ, Molnár Z, Ruiz-Agudo E, Gallego JLR, Baragaño D, Pósfai M (2022) Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S. Environ Pollut. https://doi.org/10.1016/j.envpol.2022.119451

    Article  PubMed  Google Scholar 

  • Tan S, Liu J, Fang Y, Hedlund BP, Lian Z-H, Huang L-H et al (2019) Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. ISME J 13:2044–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teske A, Wawer C, Muyzer G, Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 62:1405–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teske A, Ramsing NB, Habicht K, Fukui M, Küver J, Jørgensen BB, Cohen Y (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Environ Microbiol 64:2943–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Niel EW, Gottschal JC (1998) Oxygen consumption by Desulfovibrio strains with and without polyglucose. Appl Environ Microbiol 64:1034–1039

    Article  PubMed  PubMed Central  Google Scholar 

  • van Niel EWJ, Gomes TMP, Willems A, Collins MD, Prins RA (1996) The role of polyglucose in oxygen-dependent respiration by a new strain of Desulfovibrio salexigens. FEMS Microbiol Ecol 21:243–253

    Article  Google Scholar 

  • Walian PJ, Allen S, Shatsky M, Zeng L, Szakal ED, Liu H, Hall SC, Fisher SJ, Lam BR, Singer ME, Geller JT, Brenner SE, Chandonia J-M, Hazen TC, Witkowska HE, Biggin MD, Jap BK (2012) High-throughput isolation and characterization of untagged membrane protein complexes: outer membrane complexes of Desulfovibrio vulgaris. J Proteome Res 11:5720–5735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RK, Kaplan A, Guo LH, Shi WY, Zhou XD, Lux R, He X (2012) The influence of iron availability on human salivary microbial community composition. Microbiol Ecol 64:152–161

    Article  CAS  Google Scholar 

  • Widdel F, Musat F, Knittel K, Galushko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Barton LL, Hamilton W (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 265–304

    Chapter  Google Scholar 

  • Williamson AJ, Folens K, Matthijs S, Paz Cortes Y, Varia J, Du Laing G, Boon N, Hennebel T (2021) Selective metal extraction by biologically produced siderophores during bioleaching from low-grade primary and secondary mineral resources. Miner Eng 163:106774

    Article  CAS  Google Scholar 

  • Winkelmann G (2001) Microbial transport systems. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Zeng L, Wooton E, Stahl DA, Walian PJ (2017) Identification and characterization of the major porin of Desulfovibrio vulgaris Hildenborough. J Bacteriol 199:e00286-e317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Hedrich S, Römer F, Goldmann D, Schippers A (2020) Bioleaching of cobalt from Cu/Co-rich sulfidic mine tailings from the polymetallic Rammelsberg mine. Germany Hydrometallurgy 197:105443

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Lucian C. Staicu acknowledges the National Science Centre (NCN), Poland (Grant Number 2017/26/D/NZ1/00408) for financial support. Américo G. Duarte thanks Fundação para a Ciência e Tecnologia (Portugal) for financial support (Grant Number PTDC/BIA-BQM/29118/2017).

Funding

Funding was provided by Narodowe Centrum Nauki (Grant Number 2017/26/D/NZ1/00408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian C. Staicu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, L.L., Duarte, A.G. & Staicu, L.C. Genomic insight into iron acquisition by sulfate-reducing bacteria in microaerophilic environments. Biometals 36, 339–350 (2023). https://doi.org/10.1007/s10534-022-00410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-022-00410-8

Keywords

Navigation