Skip to main content
Log in

Ferric uptake regulators (Fur) from Vibrio cholerae and Helicobacter pylori bind a [2Fe–2S] cluster in response to elevation of intracellular free iron content

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Intracellular iron homeostasis in bacteria is primarily regulated by ferric uptake regulator (Fur). Since its discovery, Fur has been assumed to bind ferrous iron and regulate expression of target genes. However, the iron-bound Fur has never been isolated from any bacteria. In previous studies, we have shown that Escherichia coli Fur and Haemophilus influenzae Fur bind a [2Fe–2S] cluster via the conserved Cys-93 and Cys-96 when expressed in the E. coli mutant cells in which intracellular free iron content is elevated. Here we report that Fur homologs from Vibrio cholerae and Helicobacter pylori which contain Cys-93 and Cys-96 can also bind a [2Fe–2S] cluster. On the other hand, Fur homolog from Magnetospirillum gryphiswaldense MSR-1 which has no cysteine residues fails to bind any [2Fe–2S] clusters. Interestingly, different Fur proteins with the conserved Cys-93 and Cys-96 have distinct binding activities for the [2Fe–2S] cluster, with H. influenzae Fur having the highest, followed by E. coli Fur, V. cholera Fur, and H. pylori Fur. Binding of the [2Fe–2S] cluster in the Fur proteins is significantly decreased when expressed in wild-type E. coli cells, indicating that binding of the [2Fe–2S] clusters in Fur proteins is regulated by the levels of intracellular free iron content. Finally, unlike the [2Fe–2S] clusters in E. coli ferredoxin, the [2Fe–2S] clusters in the Fur proteins are not stable and quickly release ferrous iron when the clusters are reduced, suggesting that Fur may undergo reversible binding of the [2Fe–2S] cluster in response to intracellular free iron content in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Althaus EW, Outten CE, Olson KE, Cao H, O’Halloran TV (1999) The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry 38:6559–6569

    Article  CAS  PubMed  Google Scholar 

  • Bagg A, Neilands JB (1987) Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471–5477

    Article  CAS  PubMed  Google Scholar 

  • Butcher J, Sarvan S, Brunzelle JS, Couture J-F, Stintzi A (2012) Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. Proc Natl Acad Sci USA 109:10047–10052

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowart RE, Singleton FL, Hind JS (1993) A comparison of bathophenanthrolinedisulfonic acid and ferrozine as chelators of iron (II) in reduction reactions. Anal Biochem 211:151–155

    Article  CAS  PubMed  Google Scholar 

  • Cutone A, Howes BD, Miele AE, Miele R, Giorgi A, Battistoni A, Smulevich G, Musci G, di Patti MCB (2016) Pichia pastoris Fep1 is a [2Fe–2S] protein with a Zn finger that displays an unusual oxygen-dependent role in cluster binding. Sci Rep 6:31872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Z, Wang Q, Liu Z, Zhang M, Machado AC, Chiu TP, Feng C, Zhang Q, Yu L, Qi L, Zheng J, Wang X, Huo X, Qi X, Li X, Wu W, Rohs R, Li Y, Chen Z (2015) Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator. Nat Commun 6:7642

    Article  PubMed  Google Scholar 

  • Dian C, Vitale S, Leonard GA, Bahlawane C, Fauquant C, Leduc D, Muller C, de Reuse H, Michaud-Soret I, Terradot L (2011) The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol 79:1260–1275

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Clark RJ (2004) Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein. Biochem J 379:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H, Demple B (1997) In vivo kinetics of a redox-regulated transcriptional switch. Proc Natl Acad Sci USA 94:8445–8449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H, Hidalgo E, Demple B (1996) The redox state of the [2Fe–2S] clusters in SoxR protein regulates its activity as a transcription factor. J Biol Chem 271:33173–33175

    Article  CAS  PubMed  Google Scholar 

  • Dutton PL (1978) Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol 54:411–435

    Article  CAS  PubMed  Google Scholar 

  • Fillat MF (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52

    Article  CAS  PubMed  Google Scholar 

  • Fontenot CR, Tasnim H, Valdes KA, Popescu CV, Ding H (2020) Ferric uptake regulator (Fur) reversibly binds a [2Fe–2S] cluster to sense intracellular iron homeostasis in Escherichia coli. J Biol Chem 295:15454–15463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292

    Article  CAS  PubMed  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  CAS  PubMed  Google Scholar 

  • Jensen LT, Culotta VC (2000) Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis. Mol Cell Biol 20:3918–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry AP, Cheng Z, Ding H (2013) Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. Dalton Trans 42:3100–3106

    Article  CAS  PubMed  Google Scholar 

  • Li L, Miao R, Bertram S, Jia X, Ward DM, Kaplan J (2012) A role for iron–sulfur clusters in the regulation of transcription factor Yap5-dependent high iron transcriptional responses in yeast. J Biol Chem 287:35709–35721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Yang J, Tan G, Ding H (2008) Complementary roles of SufA and IscA in the biogenesis of iron–sulfur clusters in Escherichia coli. Biochem J 409:535–543

    Article  CAS  PubMed  Google Scholar 

  • Lucarelli D, Russo S, Garman E, Milano A, Meyer-Klaucke W, Pohl E (2007) Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. J Biol Chem 282:9914–9922

    Article  CAS  PubMed  Google Scholar 

  • Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapolelo DT, Zhang B, Naik SG, Huynh BH, Johnson MK (2012) Spectroscopic and functional characterization of iron-bound forms of (Nif)IscA. Biochemistry 51:8056–8070

    Article  CAS  PubMed  Google Scholar 

  • Mills SA, Marletta MA (2005) Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochemistry 44:13553–13559

    Article  CAS  PubMed  Google Scholar 

  • Pecqueur L, D’Autreaux B, Dupuy J, Nicolet Y, Jacquamet L, Brutscher B, Michaud-Soret I, Bersch B (2006) Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J Biol Chem 281:21286–21295

    Article  CAS  PubMed  Google Scholar 

  • Perard J, Nader S, Levert M, Arnaud L, Carpentier P, Siebert C, Blanquet F, Cavazza C, Renesto P, Schneider D, Maurin M, Coves J, Crouzy S, Michaud-Soret I (2018) Structural and functional studies of the metalloregulator Fur identify a promoter-binding mechanism and its role in Francisella tularensis virulence. Commun Biol 1:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinochet-Barros A, Helmann JD (2018) Redox sensing by Fe(2+) in bacterial Fur family metalloregulators. Antioxid Redox Signal 29:1858–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47:903–915

    Article  CAS  PubMed  Google Scholar 

  • Rietzschel N, Pierik AJ, Bill E, Lill R, Mühlenhoff U (2015) The basic leucine zipper stress response regulator Yap5 senses high-iron conditions by coordination of [2Fe–2S] clusters. Mol Cell Biol 35:370–378

    Article  CAS  PubMed  Google Scholar 

  • Rogers PA, Ding H (2001) l-cysteine-mediated destabilization of dinitrosyl iron complexes in proteins. J Biol Chem 276:30980–30986

    Article  CAS  PubMed  Google Scholar 

  • Schalinske KL, Anderson SA, Tuazon PT, Chen OS, Kennedy MC, Eisenstein RS (1997) The iron–sulfur cluster of iron regulatory protein 1 modulates the accessibility of RNA binding and phosphorylation sites. Biochemistry 36:3950–3958

    Article  CAS  PubMed  Google Scholar 

  • Sheikh MA, Taylor GL (2009) Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol 72:1208–1220

    Article  CAS  PubMed  Google Scholar 

  • Tan G, Lu J, Bitoun JP, Huang H, Ding H (2009) IscA/SufA paralogues are required for the 4Fe-4S cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions. Biochem J 420:463–472

    Article  CAS  PubMed  Google Scholar 

  • Troxell B, Hassan HM (2013) Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 3:59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodmansee AN, Imlay JA (2002) Quantitation of intracellular free iron by electron paramagnetic resonance spectroscopy. Methods Enzymol 349:3–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an NSF Grant (MCB 2050032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangen Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 67 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontenot, C.R., Ding, H. Ferric uptake regulators (Fur) from Vibrio cholerae and Helicobacter pylori bind a [2Fe–2S] cluster in response to elevation of intracellular free iron content. Biometals 35, 591–600 (2022). https://doi.org/10.1007/s10534-022-00390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-022-00390-9

Keywords

Navigation