Skip to main content

Advertisement

Log in

Cytotoxic cobalt (III) Schiff base complexes: in vitro anti-proliferative, oxidative stress and gene expression studies in human breast and lung cancer cells

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Increasing cancer drug chemo-resistance, especially in the treatment of breast and lung cancers, alarms the immediate need of newer and effective anticancer drugs. Until now, chemotherapeutics based on metal complexes are considered the most effective treatment modality. In the present study, we have evaluated the cytotoxic effect of two cobalt (III) Schiff base complexes based on the leads from complex combinatorial chemistry. Cobalt (III) Schiff base complexes (Complex 3 = Co(Ph-acacen)(HA)2](ClO4) and Complex 4 =  [Co(Ph-acacen)(DA)2](ClO4)] (Ph-acacen, 1-phenylbutane-1,3-dione; DA, dodecyl amine; HA, heptylamine) were evaluated against human breast cancer cell MCF-7 and lung cancer cell A549 using MTT cell viability assay, cellular morphological changes studied by Acridine Orange and Ethidium Bromide (AO/EB), Dual fluorescent staining, Hoechst staining 33248, Comet assay, Annexin V-Cy3 and 6 CFDA assay, JC-1 staining, Reactive oxygen species (ROS) assay, Immunofluorescence assay, and Real-time reverse transcription-polymerase chain reaction (RT-qPCR). Treatment of cobalt (III) Schiff base complexes (Complex 3 & 4) affected the viability of the cancer cells. The cell death induced by the complexes was predominantly apoptosis, but necrosis also occurred to a certain extent. Complex 4 produced better cytotoxic effect than complex 3, and MCF-7 cell was more responsive than A549. In that order, the complexes were more selective to cancer cell than normal cell, and more effective in overall performance than the standard drug cisplatin. Therefore, we conclude that cobalt (III) Schiff base complexes, especially complex 4, have the potential to be developed as effective drugs for treatment of cancers in general, and breast and lung cancers in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

(Adopted from Manojkumar et al. 2019)

Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig.7
Fig.8
Fig. 9
Fig.10
Fig.11
Fig.12
Fig.13
Fig.14
Fig.15
Fig.16

Similar content being viewed by others

References

  • Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aggett PJ, Fairweather-Tait S (1998) Adaptation to high and low copper intakes: its relevance to estimated safe and adequate daily dietary intakes. Am J Clin Nutr 67:1061S-1063S

    CAS  PubMed  Google Scholar 

  • Akman M, Belisario DC, Salaroglio IC, Kopecka J, Donadelli M, Enrico De Smaele ED, Riganti C (2021) Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. J Exp Clin Cancer Res 40:28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alabsi AM, Ali R, Ali AM, Al-Dubai SAR, Harun H, Abu Kasim NH, Alsalahi A (2012) Apoptosis induction, cell cycle arrest and in vitro anticancer activity of gonothalamin in a cancer cell lines. Asian Pac J Cancer Prev 13:5131–5136

    PubMed  Google Scholar 

  • Ambika S, Manojkumar Y, Arunachalam S, Gowdhami B, Sundaram KKM, Solomon RV, Venuvanalingam P, Akbarsha MA, Sundararaman M (2019) Biomolecular interaction, anti-cancer and anti-angiogenic properties of cobalt (III) Schiff base complexes. Sci Rep 9:2721

    PubMed  PubMed Central  Google Scholar 

  • Armania N, Yazan LS, Ismail IS, Foo JB, Tor YS, Ishak N, Ismail N, Ismail M (2013) Dillenia suffruticosa extract inhibits proliferation of human breast cancer cell lines (MCF-7 and MDA-MB-231) via induction of G2/M arrest and apoptosis. Molecules 18:13320–13339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badisa RB, Darling-Reed SF, Joseph P, Cooperwood JS, Latinwo LM, Goodman CB (2009) Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Res 29:2993–2996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Begum S, Syed SA, Siddiqui BS, Sattar SA, Choudhary MI (2013) Carandinol: first isohopane triterpene from the leaves of Carissa carandas L. and its cytotoxicity against cancer cell lines. Phytochem Lett 6:91–95

    CAS  Google Scholar 

  • Cornelio DB, Roesler R, Schwartsmann G (2009) Emerging therapeutic agents for cervical cancer. Recent Pat Anti-Cancer Drug Discov 4:196–206

    CAS  Google Scholar 

  • Garbutcheon-Singh KB, Grant MP, Harper BW, Krause-Heuer AM, Manohar M, Orkey N, Aldrich-Wright JR (2011) Transition metal based anticancer drugs. Curr Top Med Chem 11:521–542

    CAS  PubMed  Google Scholar 

  • Gowdhami B, Ambika S, Karthiyayini B, Ramya V, Kadalmani B, Vimala RTV, Akbarsha MA (2021) Potential application of two cobalt (III) Schiff base complexes in cancer chemotherapy: leads from a study using breast and lung cancer cells. Toxicol Vitro 75:105201

    CAS  Google Scholar 

  • Hall MD, Telma KA, Chang K-E, Lee TD, Madigan JP, Lloyd JR, Goldlust IS, Hoeschele JD, Gottesman MM (2014) Say no to DMSO: dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes. Can Res 7:3913–3922

    Google Scholar 

  • Iurlaro R, Pinedo CM (2016) Cell death induced by endoplasmic reticulum stress. FEBS J 283:2640–2652

    CAS  PubMed  Google Scholar 

  • Jagadeesan J, Langeswaran K, Gowthamkumar S, Balasubramanian MP (2013) Diosgenin exhibits beneficial efficiency on human mammary carcinoma cell line MCF-7 and against N-nitroso-N-methylurea (NMU) induced experimental mammary carcinoma. Biomed Prev Nutr 3:381–388

    Google Scholar 

  • Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    PubMed  Google Scholar 

  • Jastrzebska E, Flis S, Rakowska A, Chudy M, Jastrzebski Z, Dybko A, Brzozka Z (2013) A microfluidic system to study the cytotoxic effect of drugs: the combined effect of celecoxib and 5-fluorouracil on normal and cancer cells. Microchim Acta 180:895–901

    CAS  Google Scholar 

  • Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ (2004) Cancer statistics. 2004. CA Cancer J Clin 54:8–29

    PubMed  Google Scholar 

  • Kitsis RN, Molkentin JD (2010) Apoptotic cell death “Nixed” by an ER–mitochondrial necrotic pathway. Proc Natl Acad Sci 107:9031–9032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RS, Arunachalam S, Periasamy V, Preethy C, Riyasdeen A, Akbarsha MA (2008) Synthesis, DNA binding and antitumor activities of some novel polymer–cobalt (III) complexes containing 1, 10-phenanthroline ligand. Polyhedron 27:1111–1120

    CAS  Google Scholar 

  • Kumar RS, Arunachalam S (2008) Synthesis, micellar properties, DNA binding and antimicrobial studies of some surfactant–cobalt (III) complexes. Biophys Chem 136:136–144

    CAS  PubMed  Google Scholar 

  • Kumaravel TS, Vilhar B, Faux SP, Jha AN (2009) Comet Assay measurements: a perspective. Cell Biol Toxicol 25:53–64

    CAS  PubMed  Google Scholar 

  • Kumbar M, Patil SA, Toragalmath SS, Kinnal SM, Shettar A, Hosakeri JH (2020) Anticancer activity studies of novel metal complexes of ligands derived from polycyclic aromatic compound via greener route. J Organomet Chem 914:121219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latt SA, Wohlleb JC (1975) Optical studies of the interaction of 33258 Hoechst with DNA, chromatin, and metaphase chromosomes. Chromosoma 52:297–316

    CAS  PubMed  Google Scholar 

  • Lin CL, Lee CH, Chen CM, Cheng CW, Chen PN, Ying TH, Hsieh YH (2018) Protodioscin induces apoptosis through ROS-mediated endoplasmic reticulum stress via the JNK/p38 activation pathways in human cervical cancer cells. Cell Physiol Biochem 46:322–334

    CAS  PubMed  Google Scholar 

  • Liu Y-H, Li A, Shao J, Xie C-Z, Song X-Q, Bao W-G, Xu J-Y (2016) Four Cu (II) complexes based on antitumor chelators: synthesis, structure, DNA binding/damage, HSA interaction and enhanced cytotoxicity. Dalton Trans 45:8036–8049

    CAS  PubMed  Google Scholar 

  • Mahmoudi M, Simchi A, Milani A, Stroeve P (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336:510–518

    CAS  PubMed  Google Scholar 

  • Manojkumar Y, Ambika S, Arulkumar R, Gowdhami B, Balaji P, Vignesh G, Arunachalam S, Venuvanalingam P, Thirumurugan R, Akbarsha MA (2019) Synthesis, DNA and BSA binding, in vitro anti-proliferative and in vivo anti-angiogenic properties of some cobalt (III) Schiff base complexes. New J Chem 43:11391–11407

    CAS  Google Scholar 

  • Mariño G, Kroemer G (2013) Mechanisms of apoptotic phosphatidylserine exposure. Cell Res 23:1247–1248

    PubMed  PubMed Central  Google Scholar 

  • Marzano C, Pellei M, Tisato F, Santini C (2009) Copper complexes as anticancer agents. Anti-Cancer Agents Med 9:185–211

    CAS  Google Scholar 

  • Murugadas A, Zeeshan M, Thamaraiselvi K, Ghaskadbi S, Akbarsha MA (2016) Hydra as a model organism to decipher the toxic effects of copper oxide nanorod: Eco-toxicogenomics approach. Sci Rep 6:1–14

    Google Scholar 

  • Mwaanga P, Carraway ER, van den Hurk P (2014) The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Aquat Toxicol 150:201–209

    CAS  PubMed  Google Scholar 

  • Nagaraj K, Arunachalam S (2014) Synthesis, CMC determination, nucleic acid binding and cytotoxicity of a surfactant–cobalt (III) complex: effect of ionic liquid additive. New J Chem 38:366–375

    CAS  Google Scholar 

  • Palanivel S, Murugesan A, Yli-Harja O, Kandhavelu M (2020) Anticancer activity of THMPP: downregulation of PI3K/ S6K1 in breast cancer cell line. Saudi Pharm J 28(4):495–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJ, Palanimuthu D, Lok HC, Kovačević Z, Huang ML (2016) Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics 8:874–886

    CAS  PubMed  Google Scholar 

  • Pujalté I, Passagne I, Daculsi R, de Portal C, Ohayon-Courtès C, L’Azou B (2015) Cytotoxic effects and cellular oxidative mechanisms of metallic nanoparticles on renal tubular cells: impact of particle solubility. Toxicol Res 4:409–422

    Google Scholar 

  • Pyrko P, Schönthal AH, Hofman FM, Chen TC, Lee AS (2007) The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Can Res 67:9809–9816

    CAS  Google Scholar 

  • Rajendiran V, Karthik R, Palaniandavar M, Stoeckli-Evans H, Periasamy VS, Akbarsha MA, Srinag BS, Krishnamurthy H (2007) Mixed-ligand copper (II)-phenolate complexes: effect of coligand on enhanced DNA and protein binding, DNA cleavage, and anticancer activity. Inorg Chem 46:8208–8221

    CAS  PubMed  Google Scholar 

  • Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486

    CAS  PubMed  Google Scholar 

  • Riyasdeen A, Periasamy VS, Paul P, Alshatwi AA, Akbarsha MA (2012) Chloroform extract of Rasagenthi Mezhugu, a Siddha formulation, as an evidence-based complementary and alternative medicine for HPV-positive Cervical Cancers. Evidence-Based Complement Alternative Med 136527:1–10

    Google Scholar 

  • Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, Janes SM, Bakr OM, Cingolani R, Stellacci F (2014) A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6:7052–7061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem MZ, Nisar MA, Alshwmi M, Din SRU, Gamallat Y, Khan M, Ma T (2020) Brevilin a inhibits STAT3 signaling and induces ROS-dependent apoptosis, mitochondrial stress and endoplasmic reticulum stress in MCF-7 breast cancer cells. OncoTargets Therapy. 13:435–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Pérez Y, Morales-Bárcenas R, García-Cuellar CM, López-Marure R, Calderon-Oliver M, Pedraza-Chaverri J, Chirino YI (2010) The α-mangostin prevention on cisplatin-induced apoptotic death in LLC-PK1 cells is associated to an inhibition of ROS production and p53 induction. Chem Biol Interact 188:144–150

    PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    CAS  PubMed  Google Scholar 

  • Spector DL, Goldman RD, Leinwand LA (1998) Cell: a laboratory manual. Culture and Biochemical Analysis of Cells. CSHL Press, New York

    Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  • Tapiero H, Dá T, Tew K (2003) Trace elements in human physiology and pathology. Copper Biomed Pharmacother 57:386–398

    CAS  PubMed  Google Scholar 

  • Turnlund J, Keyes WR, Anderson HL, Acord LL (1989) Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr 49:870–878

    CAS  PubMed  Google Scholar 

  • Venkatesan R, Karuppiah PS, Arumugam G, Balamuthu K (2019) β-Asarone exhibits antifungal activity by inhibiting ergosterol biosynthesis in Aspergillus niger ATCC 16888. Proc Nat Acad Sci India Sect B 89:173–184

    CAS  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biol Med 27:612–616

    CAS  Google Scholar 

  • Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy. Int J Oncol 45:18–30

    PubMed  Google Scholar 

  • Wang Y-T, Fang Y, Zhao M, Li M-X, Ji Y-M, Han Q-X (2017) Cu (II), Ga (III) and In (III) complexes of 2-acetylpyridine N (4)-phenylthiosemicarbazone: synthesis, spectral characterization and biological activities. Med Chem Commun 8:2125–2132

    CAS  Google Scholar 

  • Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5:51–66

    CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    CAS  PubMed  Google Scholar 

  • Zangrando E, Islam M, Islam A-AM, Sheikh MC, Tarafder MTH, Miyatake R, Zahan R, Hossain MA, (2015) Synthesis, characterization and bio-activity of nickel (II) and copper (II) complexes of a bidentate NS Schiff base of S-benzyl dithiocarbazate. Inorg Chim Acta 427:278–284

    CAS  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to the Dr. R. Thirumurugan, Co-ordinator of National Centre for Alternatives to Animal Experiments (NCAAE), for the continuous support, encouragement, and guidance during the course of this research. This work was financially supported by National Centre for Alternatives to Animal Experiments (NCAAE) under UGC-CPEPA scheme, Government of India (F.No.2-1/2013 (NS/PE)). The research facility provided by Mahatma Gandhi-Doerenkamp Centre, established by Doerenkamp-Zbinden Foundation, and the Department of Science and Technology, Government of India, under DST-Promotion of University Research and Scientific Excellence (PURSE) scheme-Phase II, Rashtriya Uchchatar Shiksha Abhiyan (RUSA)-2.O by the Department of Animal Science is heartily acknowledged. The authors thank the Management of Bishop Heber College (Autonomous), Tiruchirappalli-620 017, Tamil Nadu, India, for the support (F.No: MRP/1014/2020 dated : 23.12.2020) and facilities provided through Material Chemistry Lab, PG and Research Department of Chemistry and DST-FIST Instrumentation Centre (HAIF) at Bishop Heber College.

Funding

University Grants Commission, F.No.2-1/2013 (NS/PE), Balakrishnan Gowdhami, National Centre for Alternatives to Animal Experiments (NCAAE) under UGC-CPEPA scheme, Balakrishnan Gowdhami, Department of Science and Technology, Ministry of Science and Technology, Mahatma Gandhi-Doerenkamp Centre, Mohammad Abdulkader Akbarsha,University Research, Balamuthu Kadalmani, Scientific Excellence (PURSE) scheme-Phase II, Balamuthu Kadalmani, Rashtriya Uchchatar Shiksha Abhiyan (RUSA)-2.O, Balamuthu Kadalmani, Doerenkamp-Zbinden Foundation, Mahatma Gandhi-Doerenkamp Centre, Mohammad Abdulkader Akbarsha.s

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Balamuthu Kadalmani or Mohammad Abdulkader Akbarsha.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowdhami, B., Manojkumar, Y., Vimala, R.T.V. et al. Cytotoxic cobalt (III) Schiff base complexes: in vitro anti-proliferative, oxidative stress and gene expression studies in human breast and lung cancer cells. Biometals 35, 67–85 (2022). https://doi.org/10.1007/s10534-021-00351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-021-00351-8

Keywords

Navigation