Skip to main content

Advertisement

Log in

Bismuth(III) interactions with Desulfovibrio desulfuricans: inhibition of cell energetics and nanocrystal formation of Bi2S3 and Bi0

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Sulfate-reducing bacteria have been suggested to have an etiological role in the development of inflammatory bowel diseases and ulcerative colitis in humans. Traditionally. bismuth compounds have been administered to alleviate gastrointestinal discomfort and disease symptoms. One mechanism by which this treatment occurs is through binding bacterial derived hydrogen sulfide in the intestines. With the addition of bismuth-deferiprone, bismuth-citrate and bismuth subsalicylate to reactions containing cells of D. desulfuricans ATCC 27774, the oxidation of H2 with sulfate as the electron acceptor was inhibited but H2 oxidation with nitrate, nitrite and sulfite was not reduced. Our research suggests that a target for bismuth inhibition of D. desulfuricans is the F1 subunit of the ATP synthase and, thus, dissimilatory sulfate reduction does not occur. At sublethal concentrations, bismuth as Bi(III) is precipitated by hydrogen sulfide produced from respiratory sulfate reduction by D. desulfuricans. Nanocrystals of bismuth sulfide were determined to be Bi2S3 through the use of high resolution transmission electron microscopy imaging with X-ray energy-dispersive spectroscopy analysis. In the absence of sulfate, D. desulfuricans oxidizes H2 with the reduction of Bi(III) to Bi0 and this was also established by X-ray energy-dispersive spectroscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    Article  CAS  Google Scholar 

  • Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins H (2006) Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res 4:9–14

    Article  CAS  Google Scholar 

  • Barton LL, Le Gall J, Odom JM, Peck HD Jr (1983) Energy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 153:867–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barton LL, Tomei-Torres FA, Xu H, Zocco T (2015) Metabolism of metals and metalloids by the sulfate-reducing bacteria. In: Saffarini D (ed) Bacteria–metal interactions. Springer, New York, pp 57–84

    Chapter  Google Scholar 

  • Barton LL, Lyle DA, Ritz NL, Granat AS, Khurshid AN, Kherbik Hider R, Lin HC (2016) Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774. Biometals 29:311–319

    Article  CAS  Google Scholar 

  • Basic A, Blomqvist S, Carlén A (2015) Dahlén G (2015) Estimation of bacterial hydrogen sulfide production in vitro. J Oral Microbiol 29(7):28166. https://doi.org/10.3402/jom.v7.28166

    Article  CAS  Google Scholar 

  • Beil W, Birkholz C, Wagner S, K-F Sewing (1995) Bismuth subcitrate and Omeprazole inhibit Helicobacter pylori F1-ATPase. Pharmacol 50:333–337

    Article  CAS  Google Scholar 

  • Blachier F, Davila AM, Mimoun S, Benetti PH, Atanasiu C, Andriamihaja M, Benamouzig R, Bouillaud F, Tomé D (2010) Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids 39:335–347. https://doi.org/10.1007/s00726-009-0445-2

    Article  CAS  PubMed  Google Scholar 

  • Bland MV, Ismail S, Heinemann JA, Keenan HI (2004) The action of bismuth against Helicobacter pylori mimics but is not caused by intracellular iron deprivation. Antimicrob Agents Chemother 48:1983–1988

    Article  CAS  Google Scholar 

  • Cadby IT, Faulkner M, Cheneby J, Long J, Helden J, Dolla A, Cole JA (2017) Coordinated response of the Desulfovibrio desulfuricans 27774 transcriptome to nitrate, nitrite and nitric oxide. Sci Rep 7:16228. https://doi.org/10.1038/s41598-017-16403-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH (2012) Gaskins HR (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 3:448. https://doi.org/10.3389/fphys.2012.00448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassard C, Dapoigny M, Scott KP, Crouzet L, Del’homme C, Marquet P, Martin JC, Pickering G, Ardid D, Eschalier A, Dubray C, Flint HJ, Bernalier-Donadille A (2012) Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther 35:828–838

    Article  CAS  Google Scholar 

  • Daghaghzadeh H, Memar A, Mohamadi Y, Rezakhani N, Safazadeh P, Aghaha S, Adibi P (2018) Therapeutic effects of low-dose bismuth subcitrate on symptoms and health-related quality of life in adult patients with irritable bowel syndrome: a clinical trial. J Res Pharm Pract 7:13–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalvand LF, Hosseini F, Dehaghi SM (2018) Torbati ES (2018) Inhibitory effect of bismuth oxide nanoparticles produced by Bacillus licheniformis on methicillin-resistant Staphylococcus aureus strains (MRSA). Iranian J Biotechnol 16(4):e2102. https://doi.org/10.21859/ijb.2102

    Article  Google Scholar 

  • Debraekeleer A, Remaut H (2018) Future perspective for potential Helicobacter pylori eradication therapies. Future Microbiol 13:671–687

    Article  CAS  Google Scholar 

  • Fine KD, Lee EL (1998) Efficacy of open-label bismuth subsalicylate for the treatment of microscopic colitis. Gastroenterol 114:29–36

    Article  CAS  Google Scholar 

  • Finegold SM, Downes J, Summanen PH (2012) Microbiology of regressive autism. Anaerobe 18:260–262

    Article  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Fite A, Macfarlane GT, Cummings JH, Hopkins MJ, Kong SC, Furrie E (2004) Macfarlane S (2004) Identification and quantitation of mucosal and faecal desulfovibrios using real time polymerase chain reaction. Gut 53:523–529

    Article  CAS  Google Scholar 

  • Gibson GR, Macfarlane GT, Cummings JH (1988) Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J Appl Bacteriol 65:103–111

    Article  CAS  Google Scholar 

  • Gibson GR, Cummings JH, Macfarlane GT (1991) Growth and activities of sulphate-reducing bacteria in gut contents from healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol 86:103–112

    Article  CAS  Google Scholar 

  • Guo C, Liang F, Shah Masood W, Yan X (2014) Hydrogen sulfide protected gastric epithelial cell from ischemia/reperfusion injury by Keap1 s-sulfhydration, MAPK dependent anti-apoptosis and NFjB dependent anti-inflammation pathway. Eur J Pharmacol 725:70–78

    Article  CAS  Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Internat J Nanomed 7:2109–2113

    CAS  Google Scholar 

  • Leclerc H, Oger C, Beerens H, Mossel DAA (1980) Occurrence of sulfate reducing bacteria in the human intestinal flora and in the aquatic environment. Water Res 14:253–256

    Article  Google Scholar 

  • Loubinoux J, Bronowick J-P, PereiraIAC Mougenel JL, Le Faou AE (2002) Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol 40:107–112

    Article  CAS  Google Scholar 

  • Macfarlane GT, Cummings JH, Macfarlane S (2007) Sulphate-reducing bacteria and the human large intestine. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 503–522

    Chapter  Google Scholar 

  • Mobarra N, Shanaki M, Ehteram H, Nasiri H, Sahmani M, Saeidi M, Goudarzi M, Pourkarim H, Azad M (2016) A review on iron chelators in treatment of iron overload syndromes. Int J Hematol Oncol Stem Cell Res 10:239–247

    PubMed  PubMed Central  Google Scholar 

  • Nava GM, Carbonero F, Croix JA, Greenberg EG, Gaskins HR (2012) Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J 6:57–70

    Article  CAS  Google Scholar 

  • Nazari P, Faramarzi MA, Sepehrizadeh Z, Mofid MR, Bazaz RD, Shahverdi AR (2010) Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterization. IET Nanobiotechnol 6:58–62. https://doi.org/10.1049/iet-nbt.2010.0043

    Article  Google Scholar 

  • Nazari P, Dowlatabadi-Bazaz R, Mofid MR, Pourmand MR, Daryani NE, Faramarzi MA, Sepehrizadeh Z, Shahverdi AR (2014) The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori. J Appl Biochem Biotechnol 172:570–579. https://doi.org/10.1007/s12010-013-0571-x

    Article  CAS  Google Scholar 

  • Odom JM, Peck JD Jr (1981) Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 147:161–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohge H, Furne JK, Springfield J, Sueda T, Madoff RD, Levitt MD (2003) The effect of antibiotics and bismuth on fecal hydrogen sulfide and sulfate-reducing bacteria in the rat. FEMS Microbiol Lett 228:137–142

    Article  CAS  Google Scholar 

  • Peck HD Jr (1962) Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol Rev 26:67–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peck HD Jr, LeGall J (1982) Biochemistry of dissimilatory sulfate reduction. Philos Trans R Soc Lond B 298:443–466

    Article  CAS  Google Scholar 

  • Pereira IAC, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS (2011) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2:69. https://doi.org/10.3389/fmicb.2011.00069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitcher MC, Cummings JH (1996) Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 39:1–4

    Article  CAS  Google Scholar 

  • Pullan RD, Ganesh S, Mani V, Morris J, Evans BK, Williams GT, Rhodes J (1993) Comparison of bismuth citrate and 5-aminosalicylic acid enemas in distal ulcerative colitis: a controlled trial. Gut 34:676–679

    Article  CAS  Google Scholar 

  • Reddy CA, Peck HD Jr (1978) Electron transport phosphorylation coupled to fumarate reduction by H2- and Mg2+- dependent adenosine triphosphatase activity in extracts of the rumen anaerobe Vibrio succinogenes. J Bacteriol 134:982–991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riddle MS, DuPont HL, Connor BA (2016) Clinical guideline: diagnosis, treatment and prevention of acute diarrheal infections in adults. Am J Gastroenterol 111:602–622

    Article  CAS  Google Scholar 

  • Rieznichenko LS, Gruzina TG, Dybkova SM, Ushkalov VO, Ulberg ZR (2015) Investigation of bismuth nanoparticles antimicrobial activity against high pathogen microorganisms. Am J Bioterror Biosecur Biodefens 2(1):1004

    Google Scholar 

  • Ritz NL, Burnett BJ, Setty P, Reinhart KM, Wilson MR, Alcock J, Singh SB, Barton LL, Lin HC (2016a) Sulfate-reducing bacteria impairs working memory in mice. Physiol Behav 157:281–287

    Article  CAS  Google Scholar 

  • Ritz NL, Lin DM, Wilson MR, Barton LL, Lin HC (2016b) Sulfate-reducing bacteria slow intestinal transit in a bismuth-reversible fashion in mice. Neurogastroenterol Motil. https://doi.org/10.1111/nmo.12907

    Article  PubMed  Google Scholar 

  • Ryder SD, Walker RJ, Jones H, Rhodes JM (1990) Rectal bismuth subsalicylate as therapy for ulcerative colitis. Aliment Pharmacol Ther 4:333–338

    Article  CAS  Google Scholar 

  • Singh SB, Lin HC (2015) Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms 3:866–889. https://doi.org/10.3390/microorganisms3040866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa JR, Silveira CM, Fontes P, Roma-Rodrigues C, Fernandes AR, Van Driessche G, Devreese B, Moura I, Moura JJG, Almeida MG (2017) Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate—biosynthetic costs modulate substrate selection. Biochim Biophys Acta Proteins Proteom 1865:1455–1469

    Article  CAS  Google Scholar 

  • Suarez FL, Fume JK, Springfield J, Levitt MD (1998) Bismuth subsalicylate markedly decreases hydrogen sulfide release in the human colon. Gastroenterol 114:923–929

    Article  CAS  Google Scholar 

  • Thazhath SS, Haque M, Florin TH (2013) Oral bismuth for chronic intractable diarrheal conditions? Clin Exp Gastroenterol 6:19–25

    Article  CAS  Google Scholar 

  • Zobell CE, Feltham CB (1934) A comparison of lead, bismuth, and iron as detectors of hydrogen sulphide produced by bacteria. J Bacteriol 28:169–176

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by the Winkler Bacterial Overgrowth Research Fund (BRINM-217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry L. Barton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, L.L., Granat, A.S., Lee, S. et al. Bismuth(III) interactions with Desulfovibrio desulfuricans: inhibition of cell energetics and nanocrystal formation of Bi2S3 and Bi0. Biometals 32, 803–811 (2019). https://doi.org/10.1007/s10534-019-00213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-019-00213-4

Keywords

Navigation