Skip to main content

Advertisement

Log in

Antibacterial efficacy and cytotoxicity of low intensity direct current activated silver–titanium implant system prototype

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Silver-based devices activated by electric current are of interest in biomedicine because of their broad-spectrum antimicrobial activity. This study investigates the in vitro antibacterial efficacy and cytotoxicity of a low intensity direct current (LIDC)-activated silver–titanium implant system prototype designed for localized generation and delivery of silver ions at the implantation site. First, the antibacterial efficacy of the system was assessed against methicillin-resistant Staphylococcus aureus (MRSA) over 48 h at current levels of 3 and 6 µA in Mueller–Hinton broth. The cytotoxicity of the system was then evaluated over 48 h in two phases using an in vitro model with in which the activated electrodes were suspended in growth medium in a cell-seeded tissue culture plate. In phase-1, the system was tested on human osteosarcoma (MG-63) cell line and compared to titanium controls. In phase-2, the cytotoxicity characteristics were validated with normal human diploid osteoblast cells. The LIDC-activated system demonstrated high antimicrobial efficacy against MRSA, but was also toxic to human cells immediately surrounding the electrodes. The statistical analysis showed that the cytotoxicity was a result of the presence of silver, and the electric activation did not make it worse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  • Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391

    Article  CAS  PubMed  Google Scholar 

  • An Y, Friedmann R (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

    Article  CAS  PubMed  Google Scholar 

  • AshaRani P, Mun G, Hande M, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  PubMed  Google Scholar 

  • Atiyeh B, Costagliola M, Hayek S, Dibo S (2007) Effect of silver on burn wound infection and healing: review of the literature. Burns 33:139–148

    Article  PubMed  Google Scholar 

  • Avwioro G (2011) Histochemical uses of haematoxilin—a review. JPCS 1:24–34

    Google Scholar 

  • Badiou W, Lavigne JP, Bousquet PJ, O’Callaghan D, Marès P, de Tayrac R (2011) In vitro and in vivo assessment of silver-coated polypropylene mesh to prevent infection in a rat model. Int Urogynecol J 22(3):265–272

    Article  PubMed  Google Scholar 

  • Baker A, Greenham L (1988) Release of gentamicin from acrylic bone cement: elution and diffusion studies. J Bone Joint Surg Am 70:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Berger TJ, Spadaro JA, Chapin SE, Becker RO (1976) Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother 9(2):357–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busscher HJ, Van Der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen J, Zaat S, Grainger D (2012) Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med 4(153):153

    Article  Google Scholar 

  • Butany J, Leask RL, Desai ND, Jegatheeswaran A, Silversides C, Scully HE, Feindel C (2006) Pathologic analysis of 19 heart valves with silver-coated sewing rings. J Card Surg 21(6):530–538

    Article  PubMed  Google Scholar 

  • Cao H, Liu X, Meng F, Chu PK (2011) Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 32(3):693–705

    Article  CAS  PubMed  Google Scholar 

  • Castellano JJ, Susan M, Shafii FK, Donate G, Wright TE, Mannari RJ, Payne WG, Robson MC (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4(2):114–122

    Article  PubMed  Google Scholar 

  • Cavanaugh D, Tan Z, Norris J, Hardee A, Weinhold P, Dahners L, Shirwaiker R (2016) Evaluation of silver–titanium implants activated by low intensity direct current for orthopaedic infection control: an in vitro and in vivo study. J Biomed Mater Res B Appl Biomater 104(5):1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Li Y, Huo K, Gao B, Xiong W (2014) Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles. J Biomed Mater Res A 102(10):3488–3499

    Article  PubMed  Google Scholar 

  • Cordero J, Munuera L, Folgueira M (1996) Influence of bacterial strains on bone infection. J Orthop Res 14(4):663–667

    Article  CAS  PubMed  Google Scholar 

  • Danilczuk M, Lund A, Saldo J, Yamada H, Michalik J (2005) Conduction electron spin resonance of small silver particles. Spectrochim Acta A 63:189–191

    Article  Google Scholar 

  • Danscher G, Locht L (2010) In vivo liberation of silver ions from metallic silver surfaces. Histochem Cell Biol 133:359–366

    Article  CAS  PubMed  Google Scholar 

  • Darouiche RO (1999) Anti-infective efficacy of silver-coated medical prostheses. Clin Infect Dis 29(6):1371–1377

    Article  CAS  PubMed  Google Scholar 

  • Das K, Bose S, Bandyopadhyay A, Karandikar B, Gibbins BL (2008) Implants, surface coatings for improvement of bone cell materials and antimicrobial activities of Ti. J Biomed Mater Res B Appl Biomater 87B(2):455–460

    Article  CAS  Google Scholar 

  • Davis CP, Wagle N, Anderson MD, Warren MM (1991) Bacterial and fungal killing by iontophoresis with long-lived electrodes. Antimicrob Agents Chemother 35(10):2131–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diefenbeck M, Mückley T, Hofmann GO (2006) Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37(2):S105–S112

    Article  Google Scholar 

  • Dunne N, Hill J, Mcafee P, Todd K, Kirkpatrick R, Tunney M, Patrick S (2007) In vitro study of the efficacy of acrylic bone cement loaded with supplementary amounts of gentamicin: effect on mechanical properties, antibiotic release, and biofilm formation. Acta Orthop 78(6):774–785

    Article  PubMed  Google Scholar 

  • Fichtner J, Güresir E, Seifert V, Raabe A (2010) Efficacy of silver-bearing external ventricular drainage catheters: a retrospective analysis: clinical article. J Neurosurg 12(4):840–846

    Article  Google Scholar 

  • Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190(28):156–162

    Article  CAS  PubMed  Google Scholar 

  • Fordham WR, Redmond S, Westerland A, Cortes EG, Walker C, Gallagher C, Krchnavek RR (2014) Silver as a bactericidal coating for biomedical implants. Surf Coat Technol 253:52–57

    Article  CAS  Google Scholar 

  • Fuller TA, Wysk RA, Charumani C, Kennett M, Sebastiennelli WJ, Abrahams R, Royer P (2010) Developing an engineered antimicrobial/prophylactic system using electrically activated bactericidal metals. J Mater Sci Mater Med 21(7):2103–2114

    Article  CAS  PubMed  Google Scholar 

  • Giglio ED, Cafagna D, Cometa S, Allegretta A, Pedico A, Giannossa LC, Iatta R (2013) An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization. Anal Bioanal Chem 405(2–3):805–816

    Article  PubMed  Google Scholar 

  • Gordon O, Slenters T, Brunetto P, Villaruz A, Sturdevant D, Otto M, Fromm K (2010) Silver coordination polymers for the prevention of implant infection: thiol interaction, impact on respiratory chain enzymes and hydroxyl radical induction. Antimicrob Agents Chemother 54:4208–4218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosheger G, Von Eiff C, Hardes J, Ahrens H, Streitburger A, Buerger H (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25(24):5547–5556

    Article  CAS  PubMed  Google Scholar 

  • Hadrup N, Loeschner K, Mortensen A, Sharma AK, Qvortrup K, Larsen EH, Lam HR (2012) The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro. Neurotoxicology 33(3):416–423

    Article  CAS  PubMed  Google Scholar 

  • Hardes J, von Eiff C, Streitbuerger A, Balke M, Budny T, Henrichs MP, Ahrens H (2010) Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol 101(5):389

    PubMed  Google Scholar 

  • Hendriks J, van Horn J, van der Mei H, Busscher H (2004) Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 25:545–556

    Article  CAS  PubMed  Google Scholar 

  • Hendriks J, Neut D, van Horn J, van der Mei H, Busscher H (2005) Bacterial survival in the interfacial gap in gentamicin-loaded acrylic bone cements. J Bone Joint Surg 87(2):272–276

    Article  CAS  Google Scholar 

  • Hope P, Kristinsson K, Norman P (1989) Deep infection of cemented total hip arthroplasties caused by coagulase-negative staphylococci. J Bone Joint Surg Br 71:851

    CAS  PubMed  Google Scholar 

  • Hussain S, Hess K, Gearhart J, Geiss K, Schlager J (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983

    Article  CAS  PubMed  Google Scholar 

  • Implantcast GmbH (2011) MUTARS® (Modular Universal Tumor And Revision System). http://www.implantcast.info/index.php?option=com_content&view=category&layout=blog&id=1&Itemid=57&lang=en. Accessed 18 June 2013

  • Ip M, Lui S, Poon V, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • Kakinuma H, Ishii K, Ishihama H, Honda M, Toyama Y, Matsumoto M, Aizawa M (2015) Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate-bonding ability of inositol phosphate: processing, material characterization, cytotoxicity, and antibacterial properties. J Biomed Mater Res A 1:57–64

    Article  Google Scholar 

  • Kendall R, Duncan C, Smith J (1996) Persistence of bacteria on antibiotic loaded acrylic depots: a reason for caution. Clin Orthop Relat Res 329:273–280

    Article  Google Scholar 

  • Khalilpour P, Lampe K, Wagener M, Stigler B, Heiss C, Ullrich MS, Alt V (2010) Ag/SiO (x) C (y) plasma polymer coating for antimicrobial protection of fracture fixation devices. J Biomed Mater Res B Appl Biomater 94(1):196

    PubMed  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol BiolMed 3:95–101

    Article  CAS  Google Scholar 

  • Klasen H (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26(2):131–138

    Article  CAS  PubMed  Google Scholar 

  • Knetsch ML, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3(1):340–366

    Article  CAS  Google Scholar 

  • Krebs V, Yerger ES, Barsoum WK, Bauer TW, Borden LS (2006) Treatment of the infected total hip arthroplasty. Sem Arthroplast 16(2):153–160

    Article  Google Scholar 

  • Kuroyanagi Y, Kim E, Shioya N (1991) Evaluation of a synthetic wound dressing capable of releasing silver sulfadiazine. J Burn Care Rehabil 12(2):106–115

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang Z, Liu F, Kane A, Hurt R (2012) Chemical transformations of nanosilver in biological environments. ACS Nano 6(11):9887–9899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964

    Article  CAS  PubMed  Google Scholar 

  • Necula B, van Leeuwen J, Fratila-Apachitei L, Zaat S, Apachitei I, Duszczyk J (2012) In vitro cytotoxicity evaluation of porous TiO2–Ag antibacterial coatings for human fetal osteoblasts. Acta Biomater 8(11):1742–7061

    Article  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurove N, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  PubMed  Google Scholar 

  • Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W, Milz S (2004) Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res 24:3743–3748

    CAS  PubMed  Google Scholar 

  • Picknell B, Mizen L, Sutherland R (1977) Antibacterial activity of antibiotics in acrylic bone cement. J Bone Joint Surg Br 59:302–307

    CAS  PubMed  Google Scholar 

  • Poon VK, Burd A (2004) In vitro cytotoxity of silver: implication for clinical wound care. Burns 30:140–147

    Article  PubMed  Google Scholar 

  • Qin H, Cao H, Zhao Y, Zhu C, Cheng T, Wang Q, Chu PK (2014) Anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials 35(33):9114–9125

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro M, Monteiro FJ, Ferraz MP (2012) Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2(4):176–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, Fey PD (2004) Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 32(8):445–450

    Article  PubMed  Google Scholar 

  • Samberg ME, Tan Z, Monteiro-Riviere NA, Orndorff PE, Shirwaiker RA (2013) Biocompatibility analysis of an electrically-activated silver-based antibacterial surface system for medical device applications. J Mater Sci Mater Med 24(3):755–760

    Article  CAS  PubMed  Google Scholar 

  • Shirwaiker RA, Wysk RA, Kariyawasam S, Carrion H, Voigt RC (2011) Micro-scale fabrication and characterization of a silver-polymer-based electrically activated antibacterial surface. Biofabrication 3(1):015003

    Article  PubMed  Google Scholar 

  • Sorensen T, Sorensen A, Merser S (1990) Rapid release of gentamicin from collagen sponge. Acta Orthop Scand 61(4):353–356

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou G, Pratsinis S (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  CAS  PubMed  Google Scholar 

  • Spadaro J, Berger T, Barranco S, Chapin S, Becker R (1974) Antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother 6(5):637–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stinner D, Waterman S, Masini B, Wenke J (2011) Silver dressings augment the ability of negative pressure wound therapy to reduce bacteria in a contaminated open fracture model. J Trauma 71(1 Suppl):S147–S150

    Article  PubMed  Google Scholar 

  • Tan Z (2015) An antimicrobial dual-metal implant system activated by low intensity direct current. NC State Theses and Dissertations, Raleigh

  • Tan Z, Ganapathy A, Orndorff PE, Shirwaiker RA (2015a) Effects of cathode design parameters on in vitro antimicrobial efficacy of electrically-activated silver-based iontophoretic system. J Mater Sci Mater Med 26(1):1–10

    Article  CAS  Google Scholar 

  • Tan Z, Orndorff P, Shirwaiker R (2015b) Modified Pharmacokinetic/Pharmacodynamic model for electrically activated silver–titanium implant system. Biomater Biomech Bioeng 2(3):127–141

    Google Scholar 

  • Tan Z, Xu G, Orndorff P, Shirwaiker R (2016) Effects of electrically activated silver–titanium implant system design parameters on time-kill curves against Staphylococcus aureus. J Med Biol Eng 36(3):325–333

    Article  Google Scholar 

  • Tian Y, Cao H, Qiao Y, Meng F, Liu X (2014) Antibacterial activity and cytocompatibility of titanium oxide coating modified by iron ion implantation. Acta Biomater 10(10):4505–4517

    Article  CAS  PubMed  Google Scholar 

  • Tran N, Tran P, Jarrell J, Engiles J, Thomas N, Young M, Born CT (2013) In vivo caprine model for osteomyelitis and evaluation of biofilm-resistant intramedullary nails. Biomed Res Int 2013:674378

    Article  PubMed  PubMed Central  Google Scholar 

  • Trippel S (1986) Antibiotic-impregnated cement in total joint arthroplasty. J Bone Joint Surg Am 68:1297–1302

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya H, Shirai T, Nishida H, Murakami H, Kabata T, Yamamoto N, Nakase J (2012) Innovative antimicrobial coating of titanium implants with iodine. J Orthop Sci 17(5):595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhm SH, Lee SB, Song DH, Kwon JS, Han JG, Kim KN (2014) Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications. J Nanosci Nanotechnol 14(10):7847–7854

    Article  CAS  PubMed  Google Scholar 

  • US Environmental Protection Agency (1987) Integrated risk information system: silver. http://www.epa.gov/iris/subst/0099.htm. Accessed 4 Apr 2013

  • Van de Belt H, Neut D, Schenk W, Van Horn J, Van der Mei H, Busscher H (2001) Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials 22:1607–1611

    Article  PubMed  Google Scholar 

  • Virto M, Frutos P, Torrado S, Frutos G (2003) Gentamicin release from modified acrylic bone cements with lactose and hydroxypropylmethylcellulose. Biomaterials 24:79–87

    Article  CAS  PubMed  Google Scholar 

  • Wannske M, Tscherne H (1979) Results of prophylactic use of Refobacin-Palacos in implantation of endoprosteses of the hip joint in Hannover. Aktuelle Probl Chir Orthop 12:201–208

    Google Scholar 

  • White J, Powell A, Brady K, Russell-Jones R (2003) Severe generalized argyria secondary to ingestion of colloidal silver protein. Clin Exp Dermatol 28(3):254–256

    Article  CAS  PubMed  Google Scholar 

  • Wright J, Lam K, Hansen D, Burrell R (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27(4):344–350

    Article  CAS  PubMed  Google Scholar 

  • Wysk RA, Sebastianelli WJ, Shirwaiker RA, Bailey GM, Charumani C, Kennett M, Cohen PH (2010) Prophylactic bactericidal orthopedic implants—animal testing study. J Biomed Sci Eng 3:917–926

    Article  Google Scholar 

  • Zalavras C, Patzakis M, Holtom P (2004) Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin Orthop Relat Res 427:88–93

    Google Scholar 

  • Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater 91(1):470–480

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by a research grant from NC State Research and Innovation and Seed Funding (RISF) program. The authors thank Ms. Patty Spears and Ms. Mitsu Suyemoto from NC State University’s College of Veterinary Medicine for their valuable and constructive suggestions during the antimicrobial efficacy testing experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan A. Shirwaiker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Z., Havell, E.A., Orndorff, P.E. et al. Antibacterial efficacy and cytotoxicity of low intensity direct current activated silver–titanium implant system prototype. Biometals 30, 113–125 (2017). https://doi.org/10.1007/s10534-017-9993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-017-9993-1

Keywords

Navigation