Skip to main content
Log in

DNA binding ability of histone-like protein HPhA is negatively affected by interaction with Pb2+

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The histone-like protein (HPhA) is highly homologous to the eukaryotic histones and has the ability to bind to the DNA molecules. In this study, we tested divalent metal ions Mg2+, Ca2+, Zn2+, Pb2+ for their effect on the recombinant HPhA (rHPhA)-DNA binding. We found that only Pb2+ was able to reduce the formation of rHPhA-DNA complex using gel mobility shift assays. Equilibrium dialysis showed that Pb2+ bound to rHPhA by a 2:1 ratio. The interaction of Pb2+ and rHPhA was further studied by spectroscopic method including fluorescence, ultraviolet visible (UV–Vis) absorption, and circular dichroism (CD) spectroscopies. Fluorescent spectroscopy results suggested that Pb2+ and rHPhA formed a complex that caused internal quenching of the fluorescence of the protein at the ground state, and the quenching is predominately static and mixed with dynamic quenching. UV–Vis absorption spectrum results showed Pb2+ caused a slightly blue shift of the maximum absorption wavelength of rHPhA which indicated the reduction of the protein’s hydrophobicity. The CD spectrum further indicated that a reduction of the α-helix content of rHPhA occurred upon binding to Pb2+. Synchronous fluorescence spectrometry analysis revealed that Pb2+ was able to affect the polarity of the amino acids that near the Trp and Tyr residues. These results together showed that Pb2+ interact with the recombinant rHPhA and this interaction negatively affect the ability of rHPhA to form complex with DNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bakulski KM, Rozek LS, Dolinoy DC, Paulson HL, Hu H (2012) Alzheimer’s disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr Alzheimer Res 9:563–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  PubMed  Google Scholar 

  • Chen PR, Wasinger EC, Zhao J, van der Lelie D, Chen LX, He C (2007) Spectroscopic Insights into lead(ii) coordination by the selective lead(ii)-binding protein PbrR691. J Am Chem Soc 129:12350–12351

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Liu JN, Wang Z, Dong L, Fan JH, Qu JJ (2011) Remediation of Pb-resistant bacteria to Pb polluted soil. J Environ Protect 2:130–141

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • González JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130

    Article  PubMed  Google Scholar 

  • Goyer RA (1996) Results of lead research: prenatal exposure and neurological consequences. Environ Health Perspect 104:1050–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hadjiliadis NS, Sletten E (eds) (2009) Metal complex-DNA interactions. Blackwell Publishing Ltd, Chichester

    Google Scholar 

  • Hanas JS, Rodgers JS, Bantle JA, Cheng YG (1999) Lead inhibition of dna-binding mechanism of Cys2His2 zinc finger proteins. Mol Pharmacol 56:982–988

    CAS  PubMed  Google Scholar 

  • Hitzfeld B, Taylor DM (1989) Characteristics of lead adaptation in a rat kidney cell line. II. Effect on DNA synthesis, protein synthesis, and gene expression. Mol Toxicol 2:163–175

    CAS  PubMed  Google Scholar 

  • Huang L, Yu X, Zhang J, Liu X, Zhang Y, Jiao X, Yu X (2012) Metal element excretion in 24-h urine in patients with Wilson disease under treatment of D-penicillamine. Biol Trace Elem Res 146:154–159

    Article  CAS  PubMed  Google Scholar 

  • Hud NV (2009) Nucleic acid—metal ion interactions. RSC, Cambridge

    Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Johnson FO, Atchison WD (2009) The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology 30:761–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kjellstr¨om T (1992) Mechanism and epidemiology of bone effects of cadmium. IARC Sci Publ 118:301–310

    Google Scholar 

  • Kurtyka R, Małkowski E, Burdach Z, Kita A, Karcz W (2012) Interactive effects of temperature and heavy metals (Cd, Pb) on the elongation growth in maize coleoptiles. C R Biol 335:292–299

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York, 0387312781

  • Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F (2011) Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. C R Biol 334:118–126

    Article  CAS  PubMed  Google Scholar 

  • Li T, Ji X, Sun F, Gao R, Cao S, Feng Y, Rao Z (2002) Crystallization and preliminary X-ray analysis of recombinant histone HPhA from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. Acta Crystallogr D Biol Crystallogr 58:870–871

    Article  PubMed  Google Scholar 

  • Li YY, Wang R, Zhang GL, Zheng YJ, Zhu P, Zhang ZM, Fang XX, Feng Y (2007) An archaeal histone-like protein mediates efficient p53 gene transfer and facilitates its anti-cancer effect in vitro and in vivo. Cancer Gene Ther 14:968–975

    Article  CAS  PubMed  Google Scholar 

  • Martí E, Sierra J, Cáliz J, Montserrat G, Vila X, Garau MA, Cruañas R (2013) Ecotoxicity of Cr, Cd, and Pb on two Mediterranean soils. Arch Environ Contam Toxicol 64:377–387

    Article  PubMed  Google Scholar 

  • Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and Phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  PubMed  Google Scholar 

  • Muhammad A, Xu JM (2009) Microbial biomass and bacterial community changes by Pb contamination in acidic soil. J Agric Biol Sci 1:30–37

    Google Scholar 

  • Nunes AM, Zavitsanos K, Malandrinos G, Hadjiliadis N (2010) Coordination of Cu2+ and Ni2+ with the histone model peptide of H2B N-terminal tail (1-31 residues): a spectroscopic study. Dalton Trans 39:4369–4381

    Article  CAS  PubMed  Google Scholar 

  • Panagiotou K, Panagopoulou M, Karavelas T, Dokorou V, Hagarman A, Soffer J, Schweitzer-Stenner R, Malandrinos G, Hadjiliadis N (2008) Cu(II) and Ni(II) interactions with the terminally blocked hexapeptide Ac-Leu-Ala-His-Tyr-Asn-Lys-amide model of histone H2B (80–85). Bioinorg Chem Appl, 257038

  • Rollin-Genetet F, Berthomieu C, Davin AH, Quéméneur E (2004) Escherichia coli thioredoxin inhibition by cadmium: two mutually exclusive binding sites involving Cys32 and Asp26. Eur J Biochem 271:1299–1309

    Article  CAS  PubMed  Google Scholar 

  • Roos PM, Vesterberg O, Syversen T, Flaten TP, Nordberg M (2013) Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. Biol Trace Elem Res 151:159–170

    Article  CAS  PubMed  Google Scholar 

  • Ruelas-Inzunza J, Green-Ruiz C, Zavala-Nevárez M, Soto-Jiménez M (2011) Biomonitoring of Cd, Cr, Hg and Pb in the Baluarte River basin associated to a mining area (NW Mexico). Sci Total Environ 409:3527–3536

    Article  CAS  PubMed  Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 4:128–191

    Google Scholar 

  • Weng L, Feng Y, Ji X, Cao S, Kosugi Y, Matsui I (2004) Recombinant expression and characterization of an extremely hyperthermophilic archaeal histone from Pyrococcus horikoshii OT3. Protein Expr Purif 33:145–152

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH (2008) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 28:3–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu L, Wang X, Wang X (2013) Effects of Zn2+ binding on the structural and dynamic properties of amyloid β peptide associated with Alzheimer’s disease: Asp1 or Glu11? ACS Chem Neurosci 4:1458–1468. doi:10.1021/cn4001445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Li F, Bi X, Sun L, Liu T, Jin Z, Liu C (2011) Lead, zinc, and cadmium in vegetable/crops in a zinc smelting region and its potential human toxicity. Bull Environ Contam Toxicol 87:586–590

    Article  CAS  PubMed  Google Scholar 

  • Zavitsanos K, Nunes AM, Malandrinos G, Hadjiliadis N (2011) Copper effective binding with 32–62 and 94–125 peptide fragments of histone H2B. J Inorg Biochem 105:102–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 31170742, No. 31100574 and No. 31370742).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuexun Fang, Dahai Yu or Yan Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Y., Zhan, Y. et al. DNA binding ability of histone-like protein HPhA is negatively affected by interaction with Pb2+ . Biometals 28, 207–217 (2015). https://doi.org/10.1007/s10534-014-9816-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9816-6

Keywords

Navigation