Skip to main content
Log in

Nicotianamine is a major player in plant Zn homeostasis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Nicotianamine (NA) is among the most studied plant metal chelators. A large body of evidence supports its crucial role for Fe distribution in plants and as a precursor of phytosiderophore synthesis in grasses. NA forms stable complexes in vitro not only with Fe(II) and Fe(III) but also with various other divalent metal cations including Zn(II). Early observations indicated a possible contribution of NA to Zn trafficking in plants. Numerous studies on transgenic monocot and dicot plants with modulated NA levels have since then reported Zn accumulation phenotypes. NAS genes were shown to represent promising targets for biofortification efforts. For instance, NA was found to bind Zn in rice grains in a form bioavailable for humans. Recently, additional strong support for the existence of Zn–NA complexes in planta has been obtained in rice, Arabidopsis thaliana and the Zn hyperaccumulating plant A. halleri. We review the evidence for a role of NA in the intercellular and long-distance transport of Zn in plants and discuss open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderegg G, Ripperger H (1989) The normalizing factor for the tomato mutant chloronerva. 29. Correlation between metal–complex formation and biological activity of nicotianamine analogs. J Chem Soc Chem Commun 10:647–650

    Article  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178

    Article  PubMed  CAS  Google Scholar 

  • Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

    Article  PubMed  CAS  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361:189–201

    Article  CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  PubMed  CAS  Google Scholar 

  • Benes I, Schreiber K, Ripperger H, Kircheiss A (1983) Metal complex formation by nicotianamine, a possible phytosiderophore. Experientia 39:261–262

    Article  CAS  Google Scholar 

  • Budesinsky M, Budzikiewicz H, Prochazka Z, Ripperger H, Romer A, Scholz G, Schreiber K (1980) The normalizing factor for the tomato mutant chloroerva. 10. Nicotianamine, a possible phytosiderophore of general occurrence. Phytochemistry 19:2295–2297

    Article  CAS  Google Scholar 

  • Cakmak I, Gulut K, Marschner H, Graham R (1994) Effect of zinc and iron-deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. J Plant Nutr 17:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Sari N, Marschner H, Ekiz H, Kalayci M, Yilmaz A, Braun HJ (1996) Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180:183–189

    Article  CAS  Google Scholar 

  • Coleman JE (1992) Zinc proteins–enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946

    Article  PubMed  CAS  Google Scholar 

  • Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  PubMed  CAS  Google Scholar 

  • Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Krämer U, Clemens S (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell 24:708–723

    Article  PubMed  CAS  Google Scholar 

  • Douchkov D, Gryczka C, Stephan UW, Hell R, Bäumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365–374

    Article  CAS  Google Scholar 

  • Dupont C, Yang S, Palenik B, Bourne P (2006) Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc Natl Acad Sci USA 103:17822–17827

    Article  PubMed  CAS  Google Scholar 

  • Dupont C, Butcher A, Valas R, Bourne P, Caetano-Anolles G (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci USA 107:10567–10572

    Article  PubMed  CAS  Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  PubMed  CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143:1705–1719

    Article  PubMed  CAS  Google Scholar 

  • Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737

    Article  PubMed  CAS  Google Scholar 

  • Herbik A, Koch G, Mock HP, Douchkov D, Czihal A, Thielmann J, Stephan UW, Bäumlein H (1999) Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants. Eur J Biochem 265:231–239

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  PubMed  CAS  Google Scholar 

  • Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15:101–111

    Article  PubMed  CAS  Google Scholar 

  • Irving H, Williams R (1948) Order of stability of metal complexes. Nature 162:746–747

    Article  CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE 6:e24476

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818

    Article  PubMed  CAS  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271

    Article  PubMed  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Kristensen I, Larsen PO (1974) Azetidine-2-carboxylic acid derivatives from seeds of Fagus silvatica L. and a revised structure for nicotianamine. Phytochemistry 13:2791–2798

    Article  CAS  Google Scholar 

  • Lee S, Jeon US, Lee SJ, Kim YK, Persson DP, Husted S, Schjorring JK, Kakei Y, Masuda H, Nishizawa NK, An G (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci USA 106:22014–22019

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim Y-S, Jeon US, Kim Y-K, Kakei Y, Masuda H, Nishizawa NK, An G (2011) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873

    Article  PubMed  CAS  Google Scholar 

  • Ling HQ, Koch G, Bäumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7103

    Article  PubMed  CAS  Google Scholar 

  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236

    Article  PubMed  CAS  Google Scholar 

  • Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat JF, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122

    Article  PubMed  CAS  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543

    PubMed  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama R, Kato M, Nagata S, Yanagisawa S, Yoneyama T (2012) Identification of Zn-nicotianamine and Fe-2′-deoxymugineic acid in the phloem saps from rice plants (Oryza sativa L.). Plant Cell Physiol 53:381–390

    Article  PubMed  CAS  Google Scholar 

  • Noma M, Noguchi M, Tamaki E (1971) New amino acid, nicotianamine, from tobacco leaves. Tetrahedron Lett 12:2017–2020

    Article  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    Article  PubMed  CAS  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjoerring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  PubMed  CAS  Google Scholar 

  • Pich A, Scholz G, Stephan UW (1994) Iron-dependent changes of heavy-metals, nicotianamine, and citrate in different plant organs and in the xylem exudate of 2 tomato genotypes—nicotianamine as possible copper translocator. Plant Soil 165:189–196

    Article  CAS  Google Scholar 

  • Rellan-Alvarez R, Abadia J, Alvarez-Fernandez A (2008) Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:1553–1562

    Article  PubMed  CAS  Google Scholar 

  • Rudolph A, Becker R, Scholz G, Prochazka Z, Toman J, Macek T, Herout V (1985) The occurrence of the amino-acid nicotianamine in plants and microorganisms—a reinvestigation. Biochem Physiol Pflanz 180:557–563

    Article  CAS  Google Scholar 

  • Scholz G, Becker R, Pich A, Stephan UW (1992) Nicotianamine—a common constituent of strategy-I and strategy-II of iron acquisition by plants—a review. J Plant Nutr 15:1647–1665

    Article  CAS  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK et al (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66

    Article  PubMed  CAS  Google Scholar 

  • Schuler M, Bauer P (2011) Heavy metals need assistance: the contribution of nicotianamine to metal circulation throughout the plant and the Arabidopsis NAS gene family. Front Plant Sci 2:69

    Article  PubMed  CAS  Google Scholar 

  • Schuler M, Rellán-Álvarez R, Fink-Straube C, Abadía J, Bauer P (2012) Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. Plant Cell 24:2380–2400

    Article  PubMed  CAS  Google Scholar 

  • Shojima S, Nishizawa N, Fushiya S, Nozoe S, Irifune T, Mori S (1990) Biosynthesis of phytosiderophores—in vitro biosynthesis of 2′-deoxymugineic acid from l-methionine and nicotianamine. Plant Physiol 93:1497–1503

    Article  PubMed  CAS  Google Scholar 

  • Sinclair SA, Krämer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–1567

    Article  PubMed  CAS  Google Scholar 

  • Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9:84–90

    Article  CAS  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S et al (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  PubMed  CAS  Google Scholar 

  • Trampczynska A, Böttcher C, Clemens S (2006) The transition metal chelator nicotianamine is synthesized by filamentous fungi. FEBS Lett 580:3173–3178

    Article  PubMed  CAS  Google Scholar 

  • van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Ver Loren van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  PubMed  CAS  Google Scholar 

  • von Wiren N, Marschner H, Römheld V (1996) Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol 111:1119–1125

    Google Scholar 

  • Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  PubMed  CAS  Google Scholar 

  • WHO (2002) The world health report 2002. World Health Organization, Geneva (http://www.who.int/whr/2002/)

  • Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S, Tohge T, Fernie AR, Gunther D, Gruissem W et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory is supported by the Deutsche Forschungsgemeinschaft. U.D. and S.U. gratefully acknowledge postdoctoral fellowships from the Deutsche Akademische Austauschdienst and the Japanese Society for the Promotion of Science, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Clemens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clemens, S., Deinlein, U., Ahmadi, H. et al. Nicotianamine is a major player in plant Zn homeostasis. Biometals 26, 623–632 (2013). https://doi.org/10.1007/s10534-013-9643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9643-1

Keywords

Navigation