Skip to main content
Log in

Isolation and structural identification of the trihydroxamate siderophore vicibactin and its degradative products from Rhizobium leguminosarum ATCC 14479 bv. trifolii

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The Rhizobia are a group of free-living soil bacteria known for their ability to symbiotically infect the roots of specific host plants as well as to produce siderophores in order to compete with other microorganisms for the limited availability of iron in the rhizosphere. In this study, Rhizobium leguminosarum ATCC 14479, which preferentially infects the red clover Trifolium pratense, was found to produce the trihydroxamate siderophore vicibactin (C33H55N6O15) under iron restricted conditions. In addition, two other iron-binding, siderophore-like compounds: C20H36N4O10, C31H55N6O15, were isolated and purified from the culture media. Due to the structural similarity of the latter compounds to vicibactin based on electrospray-mass spectrometry and nuclear magnetic resonance data, these heretofore unreported molecules are thought to be either modified or degraded products of vicibactin. Although vicibactin has previously been found to be commonly produced by other rhizobial strains, this is the first time it has been chemically characterized from a clover infecting strain of R. leguminosarum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN (2009) Enzymatic Hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. J Am Chem Soc 131:12682–12692

    Article  PubMed  CAS  Google Scholar 

  • Albrecht-Gary AM, Crumbliss AL (1998) Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. Met Ions Biol Syst 35:239–327

    PubMed  CAS  Google Scholar 

  • Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalaninetyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  • Atkin CL, Neilands JB, Phaff HJ (1970) Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J Bacteriol 103:722–733

    PubMed  CAS  Google Scholar 

  • Bagg A, Neilands JB (1987) Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51:509–518

    PubMed  CAS  Google Scholar 

  • Battistoni F, Platero R, Duran R, Cervenansky C, Battistoni J, Arias A, Fabiano E (2002) Identification of an iron-regulated, hemin-binding outer membrane protein in Sinorhizobium meliloti. Appl Environ Microbiol 68:5877–5881

    Article  PubMed  CAS  Google Scholar 

  • Braun V, Hantke K, Koster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Metal Ions Biol Syst 35:67–145

    CAS  Google Scholar 

  • Bristow AW, Nichols WF, Webb KS, Conway B (2002) Evaluation of protocols for reproducible electrospray in-source collisionally induced dissociation on various liquid chromatography/mass spectrometry instruments and the development of spectral libraries. Rapid Commun Mass Spectrom 16:2374–2386

    Article  PubMed  CAS  Google Scholar 

  • Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21

    Article  CAS  Google Scholar 

  • Carter RA, Worsley PS, Sawers G, Challis GL, Dilworth MJ, Carson KC et al (2002) The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: their expression in other genera requires ECF sigma factor RpoI. Mol Microbiol 44:1153–1166

    Article  PubMed  CAS  Google Scholar 

  • Chao TC, Becker A, Buhrmester J, Puhler A, Weidner S (2004) The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter. J Bacteriol 186:3609–3620

    Article  PubMed  CAS  Google Scholar 

  • Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom 36:849–865

    Article  PubMed  CAS  Google Scholar 

  • Crosa JH (1989) Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53:517–530

    PubMed  CAS  Google Scholar 

  • Crosa JH (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336

    PubMed  CAS  Google Scholar 

  • De Lorenzo V, Herrero M, Giovannini F, Neilands JB (1988) Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur J Biochem 173:537–546

    Article  PubMed  Google Scholar 

  • Dilworth MJ, Carson KC, Giles RGF, Byrne LT, Glenn AR (1998) Rhizobium leguminosarum bv. viciae produces a novel cyclic trihydroxamate siderophore, vicibactin. Microbiology 144:781–791

    Article  CAS  Google Scholar 

  • Emery T, Neilands JB (1961) Structure of the ferrichrome compounds. J Am Chem Soc 83:1626–1628

    Article  CAS  Google Scholar 

  • Eng-Wilmot DL, Rahman A, Mendenhall JV, Grayson SL, Van der Helm D (1984) Molecular structure of ferric neurosporin, a minor siderophore-like compound containing N.delta.-hydroxy-d-ornithine. J Am Chem Soc 106:1285–1290

    Article  CAS  Google Scholar 

  • Frost GE, Rosenberg H (1973) The inducible citrate-dependent iron transport system in Escherichia coli K12. Biochim Biophys Acta 330:90–101

    Article  PubMed  CAS  Google Scholar 

  • Gibson F, Magrath DI (1969) The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochim Biophys Acta 192:175–184

    Article  PubMed  CAS  Google Scholar 

  • Harrington JM, Crumbliss AL (2009) The redox hypothesis in siderophore-mediated iron uptake. Biometals 22:679–699

    Article  PubMed  CAS  Google Scholar 

  • Heemstra JR Jr, Walsh CT, Sattely ES (2009) Enzymatic tailoring of ornithine in the biosynthesis of the Rhizobium cyclic trihydroxamate siderophore vicibactin. J Am Chem Soc 131:15317–15329

    Article  PubMed  CAS  Google Scholar 

  • Hemling M, Conboy J, Bean M, Mentzer M, Carr S (1994) Gas phase hydrogen/deuterium exchange in electrospray ionization mass spectrometry as a practical tool for structure elucidation. J Am Soc Mass Spectrom 5:434–442

    Article  CAS  Google Scholar 

  • Jadhav RS, Desai AJ (1996) Effect of nutritional and environmental conditions on siderophore production by Rhizobium GN1 (peanut isolate). Indian J Exp Biol 34:436–439

    Google Scholar 

  • Jalal MAF, van der Helm D (1991) Isolation and spectroscopic identification of fungal siderophores. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC Press, Boca Raton, pp 235–269

    Google Scholar 

  • Johnston AW (2004) Mechanisms and regulation of iron uptake in the Rhizobia. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, pp 469–488

    Google Scholar 

  • Lam W, Ramanathan R (2002) In electrospray ionization source hydrogen/deuterium exchange LC-MS and LC-MS/MS for characterization of metabolites. J Am Soc Mass Spectrom 13:345–353

    Article  PubMed  CAS  Google Scholar 

  • Lankford CE, Walker JR, Reeves JB, Nabbut NH, Byers BR, Jones RJ (1966) Inoculum-dependent division lag of Bacillus cultures and its relation to an endogenous factor(s) (“schizokinen”). J Bacteriol 91:1070–1079

    PubMed  CAS  Google Scholar 

  • LeVier K, Guerinot ML (1996) The Bradyrhizobium japonicum fegA gene encodes an iron-regulated outer membrane protein with similarity to hydroxamate-type siderophore receptors. J Bacteriol 178:7265–7275

    PubMed  CAS  Google Scholar 

  • Little JL, Cleven CD, Brown SD (2011) Identification of “known unknowns” utilizing accurate mass data and chemical abstracts service databases. J Am Soc Mass Spectrom 22:348–359

    Article  PubMed  CAS  Google Scholar 

  • Lynch D, O’Brien J, Welch T, Clarke P, Cuiv PO, Crosa JH, O’Connell M (2001) Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol 183:2576–2585

    Article  PubMed  CAS  Google Scholar 

  • Manhart JR, Wong PP (1979) Nitrate reductase activities of Rhizobia and the correlation between nitrate reduction and nitrogen fixation. Can J Microbiol 25:1169–1174

    Article  PubMed  CAS  Google Scholar 

  • Matzanke B, Anemüller S, Schünemann V, Trautwein AX, Hanke K (2004) FhuF, Part of a siderophore-reductase system. Biochemistry 43:1386–1392

    Article  PubMed  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  PubMed  CAS  Google Scholar 

  • Mullis KB, Pollack JR, Neilands JB (1971) Structure of schizokinen, an iron-transport compound from Bacillus megaterium. Biochemistry 10:4894–4898

    Article  PubMed  CAS  Google Scholar 

  • Noya F, Arias A, Fabiano E (1997) Heme compounds as iron sources for nonpathogenic Rhizobium bacteria. J Bacteriol 179:3076–3078

    PubMed  CAS  Google Scholar 

  • O’Brien IG, Gibson F (1970) The structure of enterochelin and related 2,3-dihydroxy-N-benzoylserine conjugates from Escherichia coli. Biochim Biophys Acta 215:393–402

    Article  PubMed  Google Scholar 

  • Patel HN, Chakraborty RN, Desai SB (1988) Isolation and partial characterization of phenolate siderophore from Rhizobium leguminosarum IARI 102. FEMS Microbiol Lett 56:131–134

    Article  CAS  Google Scholar 

  • Persmark M, Pittman P, Buyer JS, Schwyn B, Gill PR, Neilands JB (1993) Isolation and structure of rhizobactin 1021, a siderophore from the alfalfa symbiont Rhizobium meliloti 1021. J Am Chem Soc 115:3950–3956

    Article  CAS  Google Scholar 

  • Ramirez-Bahena MH, Garcia-Fraile P, Peix A, Valverde A, Rivas R, Igual JM et al (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (= NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490

    Article  PubMed  CAS  Google Scholar 

  • Raymond KN, Dertz EA (2004) Biochemical and physical properties of siderophores. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, pp 3–17

    Google Scholar 

  • Rohrbach MR, Braun V, Köster W (1995) Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. J Bacteriol 177:7186–7193

    PubMed  CAS  Google Scholar 

  • Rudolph G, Hennecke H, Fischer HM (2006) Beyond the fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 30:631–648

    Article  PubMed  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Shoolery JN, Schwyn B, Holden I, Neilands JB (1985) Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. J Am Chem Soc 107:1739–1743

    Article  CAS  Google Scholar 

  • Stevens JB, Carter RA, Hussain H, Carson KC, Dilworth MJ, Johnston AW (1999) The fhu genes of Rhizobium leguminosarum, specifying siderophore uptake proteins: fhuDCB are adjacent to a pseudogene version of fhuA. Microbiology 145(Pt 3):593–601

    Article  PubMed  CAS  Google Scholar 

  • Storey EP (2005) Characterization of a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917: is it schizokinen? MS Thesis. East Tennessee State University, Johnson City

    Google Scholar 

  • Storey EP, Boghozian R, Little JL, Lowman DW, Chakraborty R (2006) Characterization of ‘schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917. Biometals 19:637–649

    Article  PubMed  CAS  Google Scholar 

  • Todd JD, Wexler M, Sawers G, Yeoman KH, Poole PS, Johnston AW (2002) RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology 148:4059–4071

    PubMed  CAS  Google Scholar 

  • Todd JD, Sawers G, Johnston AW (2005) Proteomic analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum bv. viciae. Mol Genet Genomics 273:197–206

    Article  PubMed  CAS  Google Scholar 

  • Wexler M, Yeoman KH, Stevens JB, de Luca NG, Sawers G, Johnston AW (2001) The Rhizobium leguminosarum tonB gene is required for the uptake of siderophore and haem as sources of iron. Mol Microbiol 41:801–816

    Article  PubMed  CAS  Google Scholar 

  • Wexler M, Todd JD, Kolade O, Bellini D, Hemmings AM, Sawers G, Johnston AW (2003) Fur is not the global regulator of iron uptake genes in Rhizobium leguminosarum. Microbiology 149:1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Wright WH (2010) Isolation and identification of the siderophore “vicibactin” produced by Rhizobium leguminosarum ATCC 14479. MS Thesis. East Tennessee State University, Johnson City

  • Yeoman KH, Wisniewski-Dye F, Timony C, Stevens JB, deLuca NG, Downie JA, Johnston AW (2000) Analysis of the Rhizobium leguminosarum siderophore-uptake gene fhuA: differential expression in free-living bacteria and nitrogen-fixing bacteroids and distribution of an fhuA pseudogene in different strains. Microbiology 146(Pt 4):829–837

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Allan Forsman for critical reading of the manuscript, Ralph Coffman and Robin Grindstaff for technical support, and the Department of Biology, East Tennessee State University for use of equipment. This study was supported by the Department of Health Sciences, ETSU, analytical facilities of Eastman Chemical Company, Kingsport, National Institutes of Health Grant GM 069367 (RC), and Research Development Grant 08–027 M (RC) from ETSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, W., Little, J., Liu, F. et al. Isolation and structural identification of the trihydroxamate siderophore vicibactin and its degradative products from Rhizobium leguminosarum ATCC 14479 bv. trifolii . Biometals 26, 271–283 (2013). https://doi.org/10.1007/s10534-013-9609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9609-3

Keywords

Navigation