Skip to main content

Advertisement

Log in

Evaluating metal ion salts as acid hydrolase mimics: metal-assisted hydrolysis of phospholipids at lysosomal pH

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Niemann-Pick disease and drug-induced phospholipidosis are lysosomal storage disorders in which there is an excessive accumulation of sphingomyelin in cellular lysosomes. Here we have explored the possibility of developing metal-based therapeutic agents to reverse phospholipid build-up through phosphate ester bond hydrolysis at lysosomal pH (~4.8). Towards this end, we have utilized a malachite green/molybdate-based colorimetric assay to quantitate the inorganic phosphate released upon the hydrolysis of sphingomyelin by twelve d- and f-block metal ion salts. In reactions conducted at 60 °C, the yields produced by the cerium(IV) complex Ce(NH4)2(NO3)6 were superior. An Amplex® Red-based colorimetric assay and mass spectrometry were then employed to detect choline. The data consistently showed that Ce(IV) hydrolyzed sphingomyelin more efficiently at lysosomal pH: i.e., yields of choline and phosphate were 54 ± 4 and 22 ± 5 % at pH ~ 4.8, compared to 8 ± 1 and 5 ± 2 % at pH ~ 7.2. Hydrolysis at 60 °C could be significantly increased by converting sphingomyelin vesicles to mixed lipid vesicles and mixed micelles of Triton X-100. We then utilized cerium(IV) to cleave sphingomyelin at 37 °C (no Triton X-100). Although choline and phosphate levels were relatively low, hydrolysis continued to be considerably more efficient at lysosomal pH. A side by side comparison to phosphatidylcholine was then made. While the yields of choline and phosphate produced by phosphatylcholine were higher, the ratio of pH ~ 4.8 hydrolysis to pH ~ 7.2 hydrolysis was usually more favorable for sphingomyelin (37 and 60 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso A, Villena A, Goñi FM (1981) Lysis and reassembly of sonicated lecithin vesicles in the presence of Triton X-100. FEBS Lett 123:200–204

    Article  PubMed  CAS  Google Scholar 

  • Anderson N, Borlak J (2006) Drug-induced phospholipidosis. FEBS Lett 580:5533–5540

    Article  PubMed  CAS  Google Scholar 

  • Bar LK, Barenholz Y, Thompson TE (1997) Effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers. Biochemistry 36:2507–2516

    Article  PubMed  CAS  Google Scholar 

  • Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758

    Article  PubMed  CAS  Google Scholar 

  • Berry JP (1996) The role of lysosomes in the selective concentration of mineral elements. A microanalytical study. Cell Mol Biol 42:395–411

    PubMed  CAS  Google Scholar 

  • Berry JP, Zhang L, Galle P, Ansoborlo E, Hengé-Napoli MH, Donnadieu-Claraz M (1997) Role of alveolar macrophage lysosomes in metal detoxification. Microsc Res Tech 36:313–323

    Article  PubMed  CAS  Google Scholar 

  • Bracken K, Moss RA, Ragunathan KG (1997) Remarkably rapid cleavage of a model phosphodiester by complexed ceric ions in aqueous micellar solutions. J Am Chem Soc 119:9323–9324

    Article  CAS  Google Scholar 

  • Buccoliero R, Ginzburg L, Futerman AH (2004) Elevation of lung surfactant phosphatidylcholine in mouse models of Sandhoff and of Niemann-Pick A disease. J Inherit Metab Dis 27:641–648

    Article  PubMed  CAS  Google Scholar 

  • Buccoliero R, Palmeri S, Ciarleglio G, Collodoro A, De Santi MM, Federico A (2007) Increased lung surfactant phosphatidylcholine in patients affected by lysosomal storage disease. J Inherit Metab Dis 30:983–985

    Article  PubMed  CAS  Google Scholar 

  • Burgess J (1978) Metal ions in solution. Halsted Press, New York, pp 263–267

    Google Scholar 

  • Chemin C, Bourgaux C, Péan JM, Pabst G, Wüthrich P, Couvreur P, Ollivon M (2008) Consequences of ions and pH on the supramolecular organization of sphingomyelin and sphingomyelin/cholesterol bilayers. Chem Phys Lipids 153:119–129

    Article  PubMed  CAS  Google Scholar 

  • Chiu SW, Vasudevan S, Jakobsson E, Jay Mashl R, Larry Scott H (2003) Structure of sphingomyelin bilayers: a simulation study. Biophys J 85:3624–3635

    Article  PubMed  CAS  Google Scholar 

  • Cogan EB, Birrell GB, Griffith OH (1999) A robotics-based automated assay for inorganic and organic phosphates. Anal Biochem 271:29–35

    Article  PubMed  CAS  Google Scholar 

  • Contreras FX, Sánchez-Magraner L, Alonso A, Goñi FM (2010) Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett 584:1779–1786

    Article  PubMed  CAS  Google Scholar 

  • Franklin SJ (2001) Lanthanide-mediated DNA hydrolysis. Curr Opin Chem Biol 5:201–208

    Article  PubMed  CAS  Google Scholar 

  • Freeman SJ, Shankaran P, Wolfe LS, Callahan JW (1985) Phosphatidylcholine and 4-methylumbelliferyl phosphorylcholine hydrolysis by purified placental sphingomyelinase. Can J Biochem Cell Biol 63:272–277

    Article  PubMed  CAS  Google Scholar 

  • Fricker SP (2006) The therapeutic applications of lanthanides. Chem Soc Rev 35:524–533

    Article  PubMed  CAS  Google Scholar 

  • Furuike S, Levadny VG, Li SJ, Yamazaki M (1999) Low pH induces an interdigitated gel to bilayer gel phase transition in dihexadecylphosphatidylcholine membrane. Biophys J 77:2015–2023

    Article  PubMed  CAS  Google Scholar 

  • Ghirlanda G, Scrimin P, Tecilla P, Tonellato U (1993) A hydrolytic reporter of copper(II) availability in artificial liposomes. J Org Chem 58:3025–3029

    Article  CAS  Google Scholar 

  • Goñi FM, Urbaneja MA, Arrondo JL, Alonso A, Durrani AA, Chapman D (1986) The interaction of phosphatidylcholine bilayers with Triton X-100. Eur J Biochem 160:659–665

    Article  PubMed  Google Scholar 

  • Gonzalez-Rothi RJ, Zander DS, Ros PR (1995) Fluoxetine hydrochloride (Prozac)-induced pulmonary disease. Chest 107:1763–1765

    Article  PubMed  CAS  Google Scholar 

  • Grant KB, Kassai M (2006) Major advances in the hydrolysis of peptides and proteins by metal ions and complexes. Curr Org Chem 10:1035–1049

    Article  CAS  Google Scholar 

  • Hauser H, Phillips MC (1979) Interactions of the polar groups of phospholipid bilayer membranes. Prog Surf Membr Sci 13:297–413

    CAS  Google Scholar 

  • Hauser H, Phillips MC, Levine BA, Williams RJP (1976) Conformation of the lecithin polar group in charged vesicles. Nature 261:390–394

    Article  PubMed  CAS  Google Scholar 

  • He X, Chen F, McGovern MM, Schuchman EH (2002) A fluorescence-based, high-throughput sphingomyelin assay for the analysis of Niemann-Pick disease and other disorders of sphingomyelin metabolism. Anal Biochem 306:115–123

    Article  PubMed  CAS  Google Scholar 

  • Hruban Z (1984) Pulmonary and generalized lysosomal storage induced by amphiphilic drugs. Environ Health Perspect 55:53–76

    Article  PubMed  CAS  Google Scholar 

  • Ikegami M, Dhami R, Schuchman EH (2003) Alveolar lipoproteinosis in an acid sphingomyelinase-deficient mouse model of Niemann-Pick disease. Am J Physiol Lung Cell Mol Physiol 284:L518–L525

    PubMed  CAS  Google Scholar 

  • Kassai M, Teopipithaporn R, Grant KB (2011) Hydrolysis of phosphatidylcholine by cerium(IV) releases significant amounts of choline and inorganic phosphate at lysosomal pH. J Inorg Biochem 105:215–223

    Article  PubMed  CAS  Google Scholar 

  • Katada H, Komiyama M (2011) Artificial restriction DNA cutters to promote homologous recombination in human cells. Curr Gene Ther 1:38–45

    Article  Google Scholar 

  • Kensil CR, Dennis EA (1981) Alkaline hydrolysis of phospholipids in model membranes and the dependence on their state of aggregation. Biochemistry 20:6079–6085

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Hu J, Liu X, Li R, Wang K (2001) Effects of lanthanide ions on hydrolysis of phosphatidylinositol in human erythrocyte membranes. Chin Sci Bull 46:401–403

    Article  CAS  Google Scholar 

  • Maldonado AL, Yatsimirsky AK (2005) Kinetics of phosphodiester cleavage by differently generated cerium(IV) hydroxo species in neutral solutions. Org Biomol Chem 3:2859–2867

    Article  PubMed  CAS  Google Scholar 

  • Manoubi L, Hocine N, Jaafoura H, El Hili A, Galle P (1998) Subcellular localization of cerium in intestinal mucosa, liver, kidney, suprarenal and testicle glands after cerium administration in the rat. J Trace Microprobe Tech 16:209–219

    CAS  Google Scholar 

  • Matsumura K, Komiyama M (1994) Hydrolysis of phosphatidylinositol by rare earth metal ion as a phospholipase C mimic. J Inorg Biochem 55:153–156

    Article  CAS  Google Scholar 

  • Milovic NM, Kostić NM (2003) Palladium(II) complex as a sequence-specific peptidase: hydrolytic cleavage under mild conditions of X-Pro peptide bonds in X-Pro-Met and X-Pro-His segments. J Am Chem Soc 12:781–788

    Article  Google Scholar 

  • Moncelli MR, Becucci L, Guidelli R (1994) The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes. Biophys J 66:1969–1980

    Article  PubMed  CAS  Google Scholar 

  • Moss RA (1994) Dynamics of lipids in synthetic membranes. Pure Appl Chem 66:851–858

    Article  CAS  Google Scholar 

  • Moss RA, Jiang W (2000) Lanthanide-mediated cleavages of micellar phosphodiesters. Langmuir 16:49–51

    Article  CAS  Google Scholar 

  • Moss RA, Park BD, Scrimin P, Ghirlanda G (1995) Lanthanide cleavage of phosphodiester liposomes. J Chem Soc Chem Commun 1627–1628

  • Niemelä P, Hyvonen MT, Vattulainen I (2004) Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine. Biophys J 87:2976–2989

    Article  PubMed  Google Scholar 

  • Oliver AE, Fisk E, Crowe LM, de Araujo PS, Crowe JH (1995) Phospholipase A2 activity in dehydrated systems: effect of the physical state of the substrate. Biochim Biophys Acta 1267:92–100

    Article  PubMed  Google Scholar 

  • Padmavathy B, Devaraj H, Devaraj N (1993) Amiodarone-induced changes in surfactant phospholipids of rat lung. Naunyn Schmiedebergs Arch Pharmacol 347:421–424

    Article  PubMed  CAS  Google Scholar 

  • Reasor MJ (1989) A review of the biology and toxicologic implications of the induction of lysosomal lamellar bodies by drugs. Toxicol Appl Pharmacol 97:47–56

    Article  PubMed  CAS  Google Scholar 

  • Reasor MJ, Kacew S (2001) Drug-induced phospholipidosis: are there functional consequences? Exp Biol Med 226:825–830

    CAS  Google Scholar 

  • Reasor MJ, Ogle CL, Walker ER, Kacew S (1988) Amiodarone-induced phospholipidosis in rat alveolar macrophages. Am Rev Respir Dis 137:510–518

    PubMed  CAS  Google Scholar 

  • Ruiz-Argüello MB, Veiga MP, Arrondo JL, Goñi FM, Alonso A (2002) Sphingomyelinase cleavage of sphingomyelin in pure and mixed lipid membranes. Influence of the physical state of the sphingolipid. Chem Phys Lipids 114:11–20

    Article  PubMed  Google Scholar 

  • Schmidt CF, Barenholz Y, Thompson TE (1977) A nuclear magnetic resonance study of sphingomyelin in bilayer systems. Biochemistry 16:2649–2656

    Article  PubMed  CAS  Google Scholar 

  • Schuchman EH (2007) The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. J Inherit Metab Dis 30:654–663

    Article  PubMed  CAS  Google Scholar 

  • Schuchman EH, Desnick RJ (2008) The Niemann-Pick diseases. In: Rosenberg RN, DiMauro S, Paulson HL, Ptácek L, Nestler EJ (eds) The molecular and genetic basis of neurologic and psychiatric disease, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 215–220

    Google Scholar 

  • Scrimin P, Tecilla P, Moss RA, Bracken K (1998) Control of permeation of lanthanide ions across phosphate-functionalized liposomal membranes. J Am Chem Soc 12:1179–1985

    Article  Google Scholar 

  • Scrimin P, Caruso S, Paggiarin N, Tecilla P (2000) Ln(III)-catalyzed cleavage of phosphate-functionalized synthetic lipids: real time monitoring of vesicle decapsulation. Langmuir 16:203–209

    Article  CAS  Google Scholar 

  • Shah DO, Schulman JH (1967) Interaction of calcium ions with lecithin and sphingomyelin monolayers. Lipids 2:21–27

    Article  PubMed  CAS  Google Scholar 

  • Suh J (2003) Synthetic artificial peptidases and nucleases using macromolecular catalytic systems. Acc Chem Res 36:562–570

    Article  PubMed  CAS  Google Scholar 

  • Takarada T, Yashiro M, Komiyama M (2000) Catalytic hydrolysis of peptides by cerium(IV). Chem Eur J 6:3906–3913

    Article  PubMed  CAS  Google Scholar 

  • Wulfsberg G (1991) Principles of descriptive inorganic chemistry. University Science Books, Mill Valley, p 25

    Google Scholar 

  • Yuan CB, Zhao DQ, Zhao B, Ni J (1996a) NMR and FT-Raman studies on the interaction of lanthanide ions with sphingomyelin bilayers. Spectro Lett 29:841–849

    Article  CAS  Google Scholar 

  • Yuan CB, Zhao DQ, Zhao B, Wu Y, Liu J, Ni J (1996b) 2D NMR and FT-Raman spectroscopic studies on the interaction of lanthanide ions and Ln-DTPA with phospholipid bilayers. Langmuir 12:5375–5378

    Article  Google Scholar 

  • Zhu B, Xue D, Wang K (2004) Lanthanide ions promote the hydrolysis of 2,3 bisphosphoglycerate. Biometals 17:423–433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation for funding (CHE-0718634, K.B.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn B. Grant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 716 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cepeda, S.S., Williams, D.E. & Grant, K.B. Evaluating metal ion salts as acid hydrolase mimics: metal-assisted hydrolysis of phospholipids at lysosomal pH. Biometals 25, 1207–1219 (2012). https://doi.org/10.1007/s10534-012-9583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9583-1

Keywords

Navigation