Skip to main content
Log in

The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Hallmarks of idiopathic and some forms of familial Parkinson’s disease are mitochondrial dysfunction, iron accumulation and oxidative stress in dopaminergic neurons of the substantia nigra. There seems to be a causal link between these three conditions, since mitochondrial dysfunction can give rise to increased electron leak and reactive oxygen species production. In turn, recent evidence indicates that diminished activity of mitochondrial complex I results in decreased Fe–S cluster synthesis and anomalous activation of Iron Regulatory Protein 1. Thus, mitochondrial dysfunction could be a founding event in the process that leads to neuronal death. Here, we present evidence showing that at low micromolar concentrations, the dopamine metabolite aminochrome inhibits complex I and ATP production in SH-SY5Y neuroblastoma cells differentiated into a dopaminergic phenotype. This effect is apparently direct, since it is replicated in isolated mitochondria. Additionally, overnight treatment with aminochrome increased the expression of the iron import transporter divalent metal transporter 1 and decreased the expression of the iron export transporter ferroportin 1. In accordance with these findings, cells treated with aminochrome presented increased iron uptake. These results suggest that aminochrome is an endogenous toxin that inhibits by oxidative modifications mitochondrial complex I and modifies the levels of iron transporters in a way that leads to iron accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguirre P, Mena N, Tapia V, Arredondo M, Núñez MT (2005) Iron homeostasis in neuronal cells: a role for IREG1. BMC Neurosci 6:3

    Article  PubMed  Google Scholar 

  • Aguirre P, Valdes P, Aracena-Parks P, Tapia V, Núñez MT (2007) Upregulation of gamma-glutamate-cysteine ligase as part of the long-term adaptation process to iron accumulation in neuronal SH-SY5Y cells. Am J Physiol Cell Physiol 292(6):C2197–C2203

    Article  PubMed  CAS  Google Scholar 

  • Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis 16(4):879–895

    PubMed  Google Scholar 

  • Aras MA, Hartnett KA, Aizenman E (2008) Assessment of cell viability in primary neuronal cultures. Curr Protoc Neurosci Chapter 7:Unit 7 18

    Google Scholar 

  • Arredondo M, Orellana A, Garate MA, Núñez MT (1997) Intracellular iron regulates iron absorption and IRP activity in intestinal epithelial (Caco-2) cells. Am J Physiol 273(2 Pt 1):G275–G280

    PubMed  CAS  Google Scholar 

  • Arriagada C, Paris I, De las Sanchez Matas MJ, Martinez-Alvarado P, Cardenas S, Castaneda P, Graumann R, Perez-Pastene C, Olea-Azar C, Couve E, Herrero MT, Caviedes P, Segura-Aguilar J (2004) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiol Dis 16(2):468–477

    Article  PubMed  CAS  Google Scholar 

  • Bautista J, Corpas R, Ramos R, Cremades O, Gutierrez JF, Alegre S (2000) Brain mitochondrial complex I inactivation by oxidative modification. Biochem Biophys Res Commun 275(3):890–894

    Article  PubMed  CAS  Google Scholar 

  • Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73(3):1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    Article  PubMed  Google Scholar 

  • Broom L, Marinova-Mutafchieva L, Sadeghian M, Davis JB, Medhurst AD, Dexter DT (2011) Neuroprotection by the selective iNOS inhibitor GW274150 in a model of Parkinson disease. Free Radic Biol Med 50(5):633–640

    Article  PubMed  CAS  Google Scholar 

  • Bulteau AL, Ikeda-Saito M, Szweda LI (2003) Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry 42(50):14846–14855

    Article  PubMed  CAS  Google Scholar 

  • Castellani RJ, Perry G, Siedlak SL, Nunomura A, Shimohama S, Zhang J, Montine T, Sayre LM, Smith MA (2002) Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett 319(1):25–28

    Article  PubMed  CAS  Google Scholar 

  • Chinopoulos C, Adam-Vizi V (2001) Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson’s disease. J Neurochem 76(1):302–306

    Article  PubMed  CAS  Google Scholar 

  • Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95(13):7631–7636

    Article  PubMed  CAS  Google Scholar 

  • Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cena V, Gallego C, Comella JX (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75(3):991–1003

    Article  PubMed  CAS  Google Scholar 

  • Gluck MR, Zeevalk GD (2004) Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson’s disease and catecholamine-associated diseases. J Neurochem 91(4):788–795

    Article  PubMed  CAS  Google Scholar 

  • Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45(6):1138–1143

    Article  PubMed  CAS  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50(5):1346–1350

    Article  PubMed  CAS  Google Scholar 

  • Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults CW (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 37(6):714–722

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56(2):446–451

    Article  PubMed  CAS  Google Scholar 

  • Humphries KM, Yoo Y, Szweda LI (1998) Inhibition of NADH-linked mitochondrial respiration by 4-hydroxy-2-nonenal. Biochemistry 37(2):552–557

    Article  PubMed  CAS  Google Scholar 

  • Iravani MM, Syed E, Jackson MJ, Johnston LC, Smith LA, Jenner P (2005) A modified MPTP treatment regime produces reproducible partial nigrostriatal lesions in common marmosets. Eur J Neurosci 21(4):841–854

    Article  PubMed  Google Scholar 

  • Jana S, Maiti AK, Bagh MB, Banerjee K, Das A, Roy A, Chakrabarti S (2007) Dopamine but not 3,4-dihydroxy phenylacetic acid (DOPAC) inhibits brain respiratory chain activity by autoxidation and mitochondria catalyzed oxidation to quinone products: implications in Parkinson’s disease. Brain Res 1139:195–200

    Article  PubMed  CAS  Google Scholar 

  • Kell DB (2010) Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 84(11):825–889

    Article  PubMed  CAS  Google Scholar 

  • Khan FH, Sen T, Maiti AK, Jana S, Chatterjee U, Chakrabarti S (2005) Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson’s disease. Biochim Biophys Acta 1741(1–2):65–74

    PubMed  Google Scholar 

  • Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AH (1992) Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 32(6):782–788

    Article  PubMed  CAS  Google Scholar 

  • Langston JW (1985) MPTP neurotoxicity: an overview and characterization of phases of toxicity. Life Sci 36(3):201–206

    Article  PubMed  CAS  Google Scholar 

  • Lv Z, Jiang H, Xu H, Song N, Xie J (2011) Increased iron levels correlate with the selective nigral dopaminergic neuron degeneration in Parkinson’s disease. J Neural Transm 118(3):361–369

    Article  PubMed  CAS  Google Scholar 

  • Mena NP, Esparza A, Tapia V, Valdes P, Núñez MT (2008) Hepcidin inhibits apical iron uptake in intestinal cells. Am J Physiol Gastrointest Liver Physiol 294(1):G192–G198

    Article  PubMed  CAS  Google Scholar 

  • Mena NP, Bulteau AL, Salazar J, Hirsch EC, Núñez MT (2011) Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity. Biochem Biophys Res Commun 409(2):241–246

    Article  PubMed  CAS  Google Scholar 

  • Munch G, Luth HJ, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P (2000) Crosslinking of alpha-synuclein by advanced glycation endproducts: an early pathophysiological step in Lewy body formation? J Chem Neuroanat 20(3–4):253–257

    Article  PubMed  CAS  Google Scholar 

  • Núñez MT, Tapia V, Rojas A, Aguirre P, Gomez F, Nualart F (2010) Iron supply determines apical/basolateral membrane distribution of intestinal iron transporters DMT1 and ferroportin 1. Am J Physiol Cell Physiol 298(3):C477–C485

    Article  PubMed  Google Scholar 

  • Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, Jackson S, Gille G, Spillantini MG, Reichmann H, Funk RH (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5(1):e8762

    Article  PubMed  Google Scholar 

  • Paris I, Perez-Pastene C, Cardenas S, Iturriaga-Vasquez P, Munoz P, Couve E, Caviedes P, Segura-Aguilar J (2010) Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotoxic Res 18(1):82–92

    Article  Google Scholar 

  • Remor AP, de Matos FJ, Ghisoni K, da Silva TL, Eidt G, Burigo M, de Bem AF, Silveira PC, de Leon A, Sanchez MC, Hohl A, Glaser V, Goncalves CA, Quincozes-Santos A, Borba Rosa R, Latini A (2011) Differential effects of insulin on peripheral diabetes-related changes in mitochondrial bioenergetics: involvement of advanced glycosylated end products. Biochim Biophys Acta 1812(11):1460–1471

    PubMed  CAS  Google Scholar 

  • Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Núñez MT, Garrick MD, Raisman-Vozari R, Hirsch EC (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 105(47):18578–18583

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2010) Complex I: inhibitors, inhibition and neurodegeneration. Exp Neurol 224(2):331–335

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26(6):1049–1055

    Article  PubMed  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827

    Article  PubMed  CAS  Google Scholar 

  • Segura-Aguilar J, Metodiewa D, Welch CJ (1998) Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochim Biophys Acta 1381(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Sian-Hulsmann J, Mandel S, Youdim MB, Riederer P (2011) The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 118(6):939–957

    Article  PubMed  Google Scholar 

  • Sims NR, Anderson MF, Hobbs LM, Kong JY, Phillips S, Powell JA, Zaidan E (2000) Impairment of brain mitochondrial function by hydrogen peroxide. Brain Res Mol Brain Res 77(2):176–184

    Article  PubMed  CAS  Google Scholar 

  • Song N, Wang J, Jiang H, Xie J (2010) Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med 48(2):332–341

    Article  PubMed  CAS  Google Scholar 

  • Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leonardi M, Pezzoli G (1999) T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology 211(2):489–495

    PubMed  CAS  Google Scholar 

  • Youdim MB, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand Suppl 126:47–54

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265(27):16330–16336

    PubMed  CAS  Google Scholar 

  • Zoccarato F, Toscano P, Alexandre A (2005) Dopamine-derived dopaminochrome promotes H(2)O(2) release at mitochondrial complex I: stimulation by rotenone, control by Ca(2+), and relevance to Parkinson disease. J Biol Chem 280(16):15587–15594

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by project ICM-P05-001-F from the Millennium Scientific Initiative, Ministerio de Economía, Chile, and Fondecyt 1100165 (JS-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco T. Núñez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Cell viability determined by LDH leakage assay. Differentiated SH-SY5Y cells were exposed to different concentrations of aminochrome for 20 h. LDH leakage was calculated as the percentage of LDH in the medium versus total LDH activity in the cells. The results are shown normalized to control. Mean ± SEM of three separate experiments. * P< 0.05, ** P< 0.01 compared to control (TIFF 1260 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguirre, P., Urrutia, P., Tapia, V. et al. The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals 25, 795–803 (2012). https://doi.org/10.1007/s10534-012-9525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9525-y

Keywords

Navigation