Skip to main content
Log in

Iron trafficking system in Helicobacter pylori

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Helicobacter pylori infections are closely associated with peptic ulcers, gastric malignancy and iron deficiency anemia. Iron is essential for almost all living organisms and the investigation of iron uptake and trafficking system is thus important to understand the pathological roles of H. pylori. Up to now, the iron trafficking system of H. pylori is not yet fully clear and merits further efforts in this regards. The available information about iron uptake and regulation has been discussed in this concise review, such as FeoB in ferrous transportation, FrpB2 in hemoglobin uptake, HugZ in heme processing, virulence factors (VacA and CagA) in transferrin utilization, Pfr and NapA in iron storage and Fur in iron regulation. The identified iron trafficking system will help us to understand the pathological roles of H. pylori in the various gastric diseases and iron deficiency anemia and stimulates further development of effective anti-bacterial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding protein cassette

Dps:

DNA-protecting proteins

EMSA:

electrophoretic mobility shift assay

Fur:

ferric uptake regulator

H. pylori :

Helicobacter pylori

IDA:

iron deficiency anemia

sRNA:

Small regulatory RNA

References

  • Alamuri P, Mehta N, Burk A, Maier RJ (2006) Regulation of the Helicobacter pylori Fe-S cluster synthesis protein NifS by iron, oxidative stress conditions, and fur. J Bacteriol 188:5325–5330

    Article  PubMed  CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  PubMed  CAS  Google Scholar 

  • Argent RH, Thomas RJ, Letley DP, Rittig MG, Hardie KR, Atherton JC (2008) Functional association between the Helicobacter pylori virulence factors VacA and CagA. J Med Microbiol 57:145–150

    Article  PubMed  CAS  Google Scholar 

  • Ash MR, Guilfoyle A, Clarke RJ, Guss JM, Maher MJ, Jormakka M (2010) Potassium-activated GTPase reaction in the G protein-coupled ferrous iron transporter B. J Biol Chem 285:14594–14602

    Article  PubMed  CAS  Google Scholar 

  • Atherton JC, Blaser MJ (2009) Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest 119:2475–2487

    Article  PubMed  CAS  Google Scholar 

  • Backert S, Selbach M (2008) Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 10:1573–1581

    Article  PubMed  CAS  Google Scholar 

  • Baichoo N, Helmann JD (2002) Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826–5832

    Article  PubMed  CAS  Google Scholar 

  • Basso D, Plebani M, Kusters JG (2010) Pathogenesis of Helicobacter pylori infection. Helicobacter 15:14–20

    Article  PubMed  CAS  Google Scholar 

  • Bereswill S, Lichte F, Vey T, Fassbinder F, Kist M (1998) Cloning and characterization of the fur gene from Helicobacter pylori. FEMS Microbiol Lett 159:193–200

    Article  PubMed  CAS  Google Scholar 

  • Bereswill S, Lichte F, Greiner S, Waidner B, Fassbinder F, Kist M (1999) The ferric uptake regulator (Fur) homologue of Helicobacter pylori: functional analysis of the coding gene and controlled production of the recombinant protein in Escherichia coli. Med Microbiol Immunol 188:31–40

    Article  PubMed  CAS  Google Scholar 

  • Bereswill S, Greiner S, van Vliet AH, Waidner B, Fassbinder F, Schiltz E, Kusters JG, Kist M (2000) Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori. J Bacteriol 182:5948–5953

    Article  PubMed  CAS  Google Scholar 

  • Blaser MJ (1997) Ecology of Helicobacter pylori in the human stomach. J Clin Invest 100:759–762

    Article  PubMed  CAS  Google Scholar 

  • Boyanova L (2011) Role of Helicobacter pylori virulence factors for iron acquisition from gastric epithelial cells of the host and impact on bacterial colonization. Future Microbiol 6:843–846

    Article  PubMed  CAS  Google Scholar 

  • Braun V, Hantke K, Koster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145

    PubMed  CAS  Google Scholar 

  • Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC (2007) EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7. Mol Microbiol 65:857–875

    Article  PubMed  CAS  Google Scholar 

  • Cardenas VM, Prieto-Jimenez CA, Mulla ZD, Rivera JO, Dominguez DC, Graham DY, Ortiz M (2011) Helicobacter pylori eradication and change in markers of iron stores among non-iron-deficient children in El Paso, Texas: an etiologic intervention study. J Pediatr Gastroenterol Nutr 52:326–332

    Article  PubMed  CAS  Google Scholar 

  • Carpenter BM, Whitmire JM, Merrell DS (2009) This is not your mother’s repressor: the complex role of fur in pathogenesis. Infect Immun 77:2590–2601

    Article  PubMed  CAS  Google Scholar 

  • Ceci P, Mangiarotti L, Rivetti C, Chiancone E (2007) The neutrophil-activating Dps protein of Helicobacter pylori, HP-NAP, adopts a mechanism different from Escherichia coli Dpa to bind and condense DNA. Nucleic Acids Res 35:2247–2256

    Article  PubMed  CAS  Google Scholar 

  • Chiancone E, Ceci P, Ilari A, Ribacchi F, Stefanini S (2004) Iron and proteins for iron storage and detoxification. Biometals 17:197–202

    Article  PubMed  CAS  Google Scholar 

  • Cho KJ, Shin HJ, Lee JH, Kim KJ, Park SS, Lee Y, Lee C, Kim KH (2009) The crystal structure of ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake. J Mol Biol 390:83–98

    Article  PubMed  CAS  Google Scholar 

  • Cooksley C, Jenks PJ, Green A, Cockayne A, Logan RP, Hardie KR (2003) NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J Med Microbiol 52:461–469

    Article  PubMed  CAS  Google Scholar 

  • Costa AC, Figueiredo C, Touati E (2009) Pathogenesis of Helicobacter pylori infection. Helicobacter 14:15–20

    Article  PubMed  CAS  Google Scholar 

  • Cover TL (1996) The vacuolating cytotoxin of Helicobacter pylori. Mol Microbiol 20:241–246

    Article  PubMed  CAS  Google Scholar 

  • Danielli A, Scarlato V (2010) Regulatory circuits in Helicobacter pylori : network motifs and regulators involved in metal-dependent responses. FEMS Microbiol Rev 34:738–752

    PubMed  CAS  Google Scholar 

  • Danielli A, Romagnoli S, Roncarati D, Costantino L, Delany I, Scarlato V (2009) Growth phase and metal-dependent transcriptional regulation of the fecA genes in Helicobacter pylori. J Bacteriol 191:3717–3725

    Article  PubMed  CAS  Google Scholar 

  • Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268

    Article  PubMed  CAS  Google Scholar 

  • Delany I, Pacheco AB, Spohn G, Rappuoli R, Scarlato V (2001a) Iron-dependent transcription of the frpB gene of Helicobacter pylori is controlled by the Fur repressor protein. J Bacteriol 183:4932–4937

    Article  PubMed  CAS  Google Scholar 

  • Delany I, Spohn G, Rappuoli R, Scarlato V (2001b) The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol 42:1297–1309

    Article  PubMed  CAS  Google Scholar 

  • Dhaenens L, Szczebara F, Van Nieuwenhuyse S, Husson MO (1999) Comparison of iron uptake in different Helicobacter species. Res Microbiol 150:475–481

    Article  PubMed  CAS  Google Scholar 

  • Dian C, Vitale S, Leonard GA, Bahlawane C, Fauquant C, Leduc D, Muller C, de Reuse H, Michaud-Soret I, Terradot L (2011) The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol 79:1260–1275

    Article  PubMed  CAS  Google Scholar 

  • Dorer MS, Talarico S, Salama NR (2009) Helicobacter pylori’s unconventional role in health and disease. PLoS Pathog 5:e1000544

    Article  PubMed  Google Scholar 

  • Dundon WG, Polenghi A, Del Guidice G, Rappuoli R, Montecucco C (2001) Neutrophil-activating protein (HP-NAP) versus ferritin (Pfr): comparison of synthesis in Helicobacter pylori. FEMS Microbiol Lett 199:143–149

    Article  PubMed  CAS  Google Scholar 

  • Eng ET, Jalilian AR, Spasov KA, Unger VM (2008) Characterization of a novel prokaryotic GDP dissociation inhibitor domain from the G protein coupled membrane protein FeoB. J Mol Biol 375:1086–1097

    Article  PubMed  CAS  Google Scholar 

  • Ernst FD, Homuth G, Stoof J, Mäder U, Waidner B, Kuipers EJ, Kist M, Kusters JG, Bereswill S, van Vliet AH (2005) Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J Bacteriol 187:3687–3692

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Prassl S, Haas R (2009) Virulence mechanisms and persistence strategies of the human gastric pathogen Helicobacter pylori. Curr Top Microbiol Immunol 337:129–171

    Article  PubMed  CAS  Google Scholar 

  • Gancz H, Censini S, Merrell DS (2006) Iron and pH homeostasis intersect at the level of Fur regulation in the gastric pathogen Helicobacter pylori. Infect Immun 74:602–614

    Article  PubMed  CAS  Google Scholar 

  • Ge R, Watt RM, Sun X, Tanner JA, He QY, Huang JD, Sun H (2006a) Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. Biochem J 393:285–293

    Article  PubMed  CAS  Google Scholar 

  • Ge R, Zhang Y, Sun X, Watt RM, He QY, Huang JD, Wilcox DE, Sun H (2006b) Thermodynamic and kinetic aspects of metal binding to the histidine-rich protein, Hpn. J Am Chem Soc 128:11330–11331

    Article  PubMed  CAS  Google Scholar 

  • Ge R, Sun X, Gu Q, Watt RM, Tanner JA, Wong BC, Xia HH, Huang JD, He QY, Sun H (2007) A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori. J Biol Inorg Chem 12:831–842

    Article  PubMed  CAS  Google Scholar 

  • Ge R, Sun X, He Q-Y (2009) Iron acquisition by Streptococcus species: and updated review. Front Biol China 4:392–401

    Article  Google Scholar 

  • Genco CA, Dixon DW (2001) Emerging strategies in microbial haem capture. Mol Microbiol 39:1–11

    Article  PubMed  CAS  Google Scholar 

  • Goddard AF, James MW, McIntyre AS, Scott BB (2011) Guidelines for the management of iron deficiency anaemia. Gut 60:1309–1316

    Article  PubMed  CAS  Google Scholar 

  • González-López MA, Olivares-Trejo JJ (2009) The gene frpB2 of Helicobacter pylori encodes an hemoglobin-binding protein involved in iron acquisition. Biometals 22:889–894

    Article  PubMed  Google Scholar 

  • Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johansson J (2010) RNAs: regulators of bacterial virulence. Nat Rev Microbiol 8:857–866

    Article  PubMed  CAS  Google Scholar 

  • Grosse C, Scherer J, Koch D, Otto M, Taudte N, Grass G (2006) A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. Mol Microbiol 62:120–131

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Guo G, Mao X, Zhang W, Xiao J, Tong W, Liu T, Xiao B, Liu X, Feng Y, Zou Q (2008) Functional identification of HugZ, a heme oxygenase from Helicobacter pylori. BMC Microbiol 8:226

    Article  PubMed  Google Scholar 

  • Hattori M, Jin Y, Nishimasu H, Tanaka Y, Mochizuki M, Uchiumi T, Ishitani R, Ito K, Nureki O (2009) Structural basis of novel interactions between the small-GTPase and GDI-like domains in prokaryotic FeoB iron transporter. Structure 17:1345–1355

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Jiang F, Guo Y, Shen X, Zhang Y, Zhang R, Guo G, Mao X, Zou Q, Wang DC (2011) Crystal structure of HugZ, a novel heme oxygenase from Helicobacter pylori. J Biol Chem 286:1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Huang CH, Lee IL, Yeh IJ, Liao JH, Ni CL, Wu SH, Chiou SH (2010) Upregulation of a non-heme iron-containing ferritin with dual ferroxidase and DNA-binding activities in Helicobacter pylori under acid stress. J Biochem 147:535543

    Google Scholar 

  • Husson MO, Legrand D, Spik G, Leclerc H (1993) Iron acquisition by Helicobacter pylori: importance of human lactoferrin. Infect Immun 61:2694–2697

    PubMed  CAS  Google Scholar 

  • Kammler M, Schon C, Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212–6219

    PubMed  CAS  Google Scholar 

  • Klebba PE, McIntosh MA, Neilands JB (1982) Kinetics of biosynthesis of iron-regulated membrane proteins in Escherichia coli. J Bacteriol 149:880–888

    PubMed  CAS  Google Scholar 

  • Koropatkin N, Randich AM, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ (2007) The structure of the iron-binding protein, FutA1, from Synechocystis 6803. J Biol Chem 282:27468–27477

    Article  PubMed  CAS  Google Scholar 

  • Kunkle CA, Schmitt MP (2007) Comparative analysis of hmuO function and expression in Corynebacterium species. J Bacteriol 189:3650–3654

    Article  PubMed  CAS  Google Scholar 

  • Leunk RD (1991) Production of a cytotoxin by Helicobacter pylori. Rev Infect Dis 13:S686–S689

    Article  PubMed  Google Scholar 

  • Malfertheiner P, Selgrad M (2010) Helicobacter pylori infection and current clinical areas of contention. Curr Opin Gastroenterol 26:618–623

    Article  PubMed  Google Scholar 

  • Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Massé E, Salvail H, Desnoyers G, Arguin M (2007) Small RNAs controlling iron metabolism. Curr Opin Microbiol 10:140–145

    Article  PubMed  Google Scholar 

  • Merrell DS, Thompson LJ, Kim CC, Mitchell H, Tompkins LS, Lee A, Falkow S (2003) Growth phase-dependent response of Helicobacter pylori to iron starvation. Infect Immun 71:6510–6525

    Article  PubMed  CAS  Google Scholar 

  • Namavar F, Sparrius M, Veerman EC, Appelmelk BJ, Vandenbroucke-Grauls CM (1998) Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin. Infect Immun 66:444–447

    PubMed  CAS  Google Scholar 

  • Pacifico L, Anania C, Osborn JF, Ferraro F, Chiesa C (2010) Consequences of Helicobacter pylori infection in children. World J Gastroenterol 16:5181–5194

    Article  PubMed  Google Scholar 

  • Payne SM (1993) Iron acquisition in microbial pathogenesis. Trends Microbiol 1:66–69

    Article  PubMed  CAS  Google Scholar 

  • Perry RD, Mier I Jr, Fetherston JD (2007) Roles of the Yfe and Feo transporters of Yersinia pestis in iron uptake and intracellular growth. Biometals 20:699–703

    Article  PubMed  CAS  Google Scholar 

  • Posey JE, Gherardini FC (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–1653

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941

    Article  PubMed  CAS  Google Scholar 

  • Salama NR, Otto G, Tompkins L, Falkow S (2001) Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect Immun 69:730–736

    Article  PubMed  CAS  Google Scholar 

  • Schauer K, Rodionov DA, de Reuse H (2008) New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci 33:330–338

    Article  PubMed  CAS  Google Scholar 

  • Segal ED, Tompkins LS (1993) Identification and characterization of a Helicobacter pylori hemolysin. Infect Agents Dis 2:178–182

    PubMed  CAS  Google Scholar 

  • Senkovich O, Ceaser S, McGee DJ, Testerman TL (2010) Unique host iron utilization mechanisms of Helicobacter pylori revealed with iron-deficient chemically defined media. Infect Immun 78:1841–1849

    Article  PubMed  CAS  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Berlett BS (1991) Fenton chemistry. Amino acid oxidation. J Biol Chem 266:17201–17211

    PubMed  CAS  Google Scholar 

  • Sun X, Ge R, Chiu JF, Sun H, He QY (2008a) Identification of proteins related to nickel homeostasis in Helicobater pylori by immobilized metal affinity chromatography and two-dimensional gel electrophoresis. Metal Based Drugs 2008:289490

    Article  PubMed  Google Scholar 

  • Sun X, Ge R, Chiu JF, Sun H, He QY (2008b) Lipoprotein MtsA of MtsABC in Streptococcus pyogenes primarily binds ferrous ion with bicarbonate as a synergistic anion. FEBS Lett 582:1351–1354

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Baker HM, Ge R, Sun H, He QY, Baker EN (2009) Crystal structure and metal binding properties of the lipoprotein MtsA, responsible for iron transport in Streptococcus pyogenes. Biochemistry 48:6184–6190

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Tompkins LS, Amieva MR (2009) Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche. PLoS Pathog 5:e1000407

    Article  PubMed  Google Scholar 

  • Tan S, Noto JM, Romero-Gallo J, Peek RM Jr, Amieva MR (2011) Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface. PLoS Pathog 7:e1002050

    Article  PubMed  CAS  Google Scholar 

  • Teneberg S, Miller-Podraza H, Lampert HC, Evans DJ Jr, Evans DG, Danielsson D, Karlsson KA (1997) Carbohydrate binding specificity of the neutrophil-activating protein of Helicobacter pylori. J Biol Chem 272:19067–19071

    Article  PubMed  CAS  Google Scholar 

  • Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  PubMed  CAS  Google Scholar 

  • Tonello F, Dundon WG, Satin B, Molinari M, Tognon G, Grandi G, Del Giudice G, Rappuoli R, Montecucco C (1999) The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol Microbiol 34:238–246

    Article  PubMed  CAS  Google Scholar 

  • Tsolis RM, Baumler AJ, Heffron F, Stojiljkovic I (1996) Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect Immun 64:4549–4556

    PubMed  CAS  Google Scholar 

  • van Vliet AHM, Bereswill S, Kusters JG (2001) Ion metabolism and transport. In: Mobley HLT, Mendz GL, Hazell SL (eds) Helicobacter pylori: physiology and genetics. ASM Press, Washington DC

    Google Scholar 

  • van Vliet AH, Stoof J, Vlasblom R, Wainwright SA, Hughes NJ, Kelly DJ, Bereswill S, Bijlsma JJ, Hoogenboezem T, Vandenbroucke-Grauls CM, Kist M, Kuipers EJ, Kusters JG (2002) The role of the Ferric Uptake Regulator (Fur) in regulation of Helicobacter pylori iron uptake. Helicobacter 7:237–244

    Article  PubMed  Google Scholar 

  • van Vliet AH, Stoof J, Poppelaars SW, Bereswill S, Homuth G, Kist M, Kuipers EJ, Kusters JG (2003) Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori fur repressor. J Biol Chem 278:9052–9057

    Article  PubMed  Google Scholar 

  • Velayudhan J, Hughes NJ, McColm AA, Bagshaw J, Clayton CL, Andrews SC, Kelly DJ (2000) Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol 37:274–286

    Article  PubMed  CAS  Google Scholar 

  • Vitale S, Fauquant C, Lascoux D, Schauer K, Saint-Pierre C, Michaud-Soret I (2009) A ZnS(4) structural zinc site in the Helicobacter pylori ferric uptake regulator. Biochemistry 48:5582–5591

    Article  PubMed  CAS  Google Scholar 

  • Waidner B, Greiner S, Odenbreit S, Kavermann H, Velayudhan J, Stahler F, Guhl J, Bisse E, van Vliet AH, Andrews SC, Kusters JG, Kelly DJ, Haas R, Kist M, Bereswill S (2002) Essential role of ferritin Pfr in Helicobacter pylori iron metabolism and gastric colonization. Infect Immun 70:3923–3929

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Alamuri P, Maier RJ (2006) The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol 61:847–860

    Article  PubMed  CAS  Google Scholar 

  • Weinberg ED (2009) Iron availability and infection. Biochim Biophys Acta 1790:600–605

    Article  PubMed  CAS  Google Scholar 

  • Wen S, Moss SF (2009) Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Lett 282:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wen Y, Marcus EA, Matrubutham U, Gleeson MA, Scott DR, Sachs G (2003) Acid-adaptive genes of Helicobacter pylori. Infect Immun 71:5921–5939

    Article  PubMed  CAS  Google Scholar 

  • Whitmire JM, Gancz H, Merrell DS (2007) Balancing the double-edged sword: metal ion homeostasis and the ulcer bug. Curr Med Chem 14:469–478

    Article  PubMed  CAS  Google Scholar 

  • Wooldridge KG, Williams PH (1993) Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12:325–348

    Article  PubMed  CAS  Google Scholar 

  • Worst DJ, Otto BR, de Graaff J (1995) Iron-repressible outer membrane proteins of Helicobacter pylori involved in heme uptake. Infect Immun 63:4161–4165

    PubMed  CAS  Google Scholar 

  • Worst DJ, Gerrits MM, Vandenbroucke-Grauls CM, Kusters JG (1998) Helicobacter pylori ribBA-mediated riboflavin production is involved in iron acquisition. J Bacteriol 180:1473–1479

    PubMed  CAS  Google Scholar 

  • Worst DJ, Maaskant J, Vandenbroucke-Grauls CM, Kusters JG (1999) Multiple haem-utilization loci in Helicobacter pylori. Microbiology 145:681–688

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Li W, Guo G, Li B, Liu Z, Jia K, Guo Y, Mao X, Zou QM (2009a) Identification of small noncoding RNAs in Helicobacter pylori by a bioinformatics-based approach. Curr Microbiol 58:258–263

    Article  PubMed  CAS  Google Scholar 

  • Xiao B, Li W, Guo G, Li BS, Liu Z, Tang B, Mao XH, Zou QM (2009b) Screening and identification of natural antisense transcripts in Helicobacter pylori by a novel approach based on RNAse I protection assay. Mol Biol Rep 36:1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N, Granger DN, Evans DJ Jr, Evans DG, Graham DY, Anderson DC, Wolf RE, Kvietys PR (1993) Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology 105:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Young SP, Bomford A, Williams R (1984) The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes. Biochem J 219:505–510

    PubMed  CAS  Google Scholar 

  • Zhu W, Hunt DJ, Richardson AR, Stojiljkovic I (2000) Use of heme compounds as iron sources by pathogenic neisseriae requires the product of the hemO gene. J Bacteriol 182:439–447

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Rory Watt from HKU is acknowledged for the help in the preparation of this paper. This work was partially supported by National Natural Science Foundation of China (20801061 and 31000373), Guangdong Natural Science Foundation (8451027501001233) and the Fundamental Research Funds for the Central Universities (10lgpy19 and 21611201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiguang Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, R., Sun, X. Iron trafficking system in Helicobacter pylori . Biometals 25, 247–258 (2012). https://doi.org/10.1007/s10534-011-9512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9512-8

Keywords

Navigation