Skip to main content
Log in

Influence of vanadium supplementation on oxidative stress factors in the muscle of STZ-diabetic rats

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

In recent years, the role of free radical damage consequent to oxidative stress is widely discussed in diabetic complications. In this aspect, the protection of cell integrity by trace elements is a topic to be investigated. Vanadium is a trace element believed to be important for normal cell function and development. The aim of the present study was to investigate the effect of vanadyl sulfate supplementation on the antioxidant system in the muscle tissue of diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) to male Swiss albino rats. The rats were randomly divided into 4 groups: Group I, control; Group II, vanadyl sulfate control; Group III, STZ-diabetic untreated; Group IV, STZ-diabetic treated with vanadyl sulfate. Vanadyl sulfate (100 mg/kg) was given daily by gavage for 60 days. At the last day of the experiment, rats were killed, muscle tissues were taken, homogenized in cold saline to make a 10% (w/v) homogenate. Body weights and blood glucose levels were estimated at 0, 30 and 60th days. Antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), as well as carbonic anhydrase (CA), myeloperoxidase (MPO) activities and protein carbonyl content (PCC) were determined in muscle tissue. Vanadyl sulfate administration improved the loss in body weight due to STZ-induced diabetes and decreased the rise in blood glucose levels. It was shown that vanadium supplementation to diabetic rats significantly decrease serum antioxidant enzyme levels, which were significantly raised by diabetes in muscle tissue showing that this trace element could be used as preventive for diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Akgün-Dar K, Bolkent S, Yanardag R, Tunali S (2007) Vanadyl sulfate protects against streptozotocin-induced morphological and biochemical changes in rat aorta. Cell Biochem Funct 25:603–609

    Article  PubMed  Google Scholar 

  • Badmaev V, Prakash S, Majeed M (1999) Vanadium: a review of its potential role in the fight against diabetes. J Altern Complement Med 5:273–291

    Article  PubMed  CAS  Google Scholar 

  • Bakhtiar R, Ochiai E-I (1999) Pharmacological applications of inorganic complexes. Gen Pharmacol 32:525–540

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  PubMed  CAS  Google Scholar 

  • Bendayan M, Gingras D (1989) Effect of vanadate administration on blood glucose and insulin levels as well as on the exocrine pancreatic function in streptozotocin-diabetic rats. Diabetologia 32:561–567

    Article  PubMed  CAS  Google Scholar 

  • Berlett BS, Stadman ER (1997) Protein oxidation in aging, disease and oxidative stress. J Biol Chem 272:20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Boden G, Chen X, Ruiz J, van Rossum GDV, Turco S (1996) Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism 45:1130–1135

    Article  PubMed  CAS  Google Scholar 

  • Bolkent S, Bolkent S, Yanardag R, Tunali S (2005) Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 70:103–109

    Article  PubMed  CAS  Google Scholar 

  • Cantley LC Jr, Josephson L, Warner R, Yanagisawa M, Lechene C, Guidotti G (1977) Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252:7421–7423

    PubMed  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1977) Purification by affinity chromatography of yeast glutathione reductase, the enzyme responsible for the NADPH-dependent reduction of the mixed disulfide of coenzyme A and glutathione. Biochim Biophys Acta 484:268–274

    PubMed  CAS  Google Scholar 

  • Chakraborty T, Chatterjee A, Rana A, Dhachinamoorthi D, Kumar PA, Chatterjee M (2007) Carcinogen-induced early molecular events and its implication in the initiation of chemical hepatocarcinogenesis in rats: chemopreventive role of vanadium on this process. Biochim Biophys Acta 1772:48–59

    PubMed  CAS  Google Scholar 

  • Clark AS, Fagan JM, Mitch WE (1985) Selectivity of the insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem J 232:273–276

    PubMed  CAS  Google Scholar 

  • Dai S, Thompson KH, McNeill JH (1994) One-year treatment of streptozotocin-induced diabetic rats with vanadyl sulphate. Pharmacol Toxicol 74:101–109

    Article  PubMed  CAS  Google Scholar 

  • Gumieniczek A, Hopkała H, Wójtowicz Z, Nikołajuk J (2002) Changes in antioxidant status of heart muscle tissue in experimental diabetes in rabbits. Acta Biochim Pol 49:529–535

    PubMed  CAS  Google Scholar 

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione-S-transferases. Methods Enzymol 77:398–405

    Article  PubMed  CAS  Google Scholar 

  • Heyliger CE, Tahiliani AG, McNeill JH (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227:1474–1477

    Article  PubMed  CAS  Google Scholar 

  • Hillegass LM, Griswold DE, Brickson B, Albrightson-Winslow C (1990) Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods 24:285–295

    Article  PubMed  CAS  Google Scholar 

  • Hopfner RL, McNeill JR, Gopalakrishnan V (1998) Vanadate treatment normalizes exaggerated vascular smooth muscle responses in the obese Zucker rat. Eur J Pharmacol 357:61–65

    Article  PubMed  CAS  Google Scholar 

  • Jandhyala BS, Hom GJ (1983) Minireview: physiological and pharmacological properties of vanadium. Life Sci 33:1325–1340

    Article  PubMed  CAS  Google Scholar 

  • Junod A, Lambert AE, Stauffacher W, Renold AE (1969) Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest 48:2129–2139

    Article  PubMed  CAS  Google Scholar 

  • Koyuturk M, Tunali S, Bolkent S, Yanardag R (2005) Effects of vanadyl sulfate on liver of streptozotocin-induced diabetic rats. Biol Trace Elem Res 104:233–247

    Article  PubMed  CAS  Google Scholar 

  • Lapenna D, Ciofani G, Bruno C, Pierdomenico SD, Giuliani L, Giamberardino MA, Cuccurullo F (2002) Vanadyl as a catalyst of human lipoprotein oxidation. Biochem Pharmacol 63:375–380

    Article  PubMed  CAS  Google Scholar 

  • Larbi EB (1998) Drug-induced rhabdomyolysis. Ann Saudi Med 18:525–530

    PubMed  CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G, Ahn B-W, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maruyama Y, Lindholm B, Stenvinkel P (2004) Inflammation and oxidative stress in ESRD the role of myeloperoxidase. J Nephrol 17(Suppl. 8):72–76

    Google Scholar 

  • Marzban L, McNeill JH (2003) Insulin-like actions of vanadium: potential as a therapeutic agent. J Trace Element Exp Med 16:253–267

    Article  CAS  Google Scholar 

  • Matkovics B, Varga SI, Szabó L, Witas H (1982) The effect of diabetes on the activities of the peroxide metabolism enzymes. Horm Metab Res 14:77–79

    Article  PubMed  CAS  Google Scholar 

  • Mohammad A, Sharma V, McNeill JH (2002) Vanadium increases GLUT4 in diabetic rat skeletal muscle. Mol Cell Biochem 233:139–143

    Article  PubMed  CAS  Google Scholar 

  • Mongold JJ, Cros GH, Vian L, Tep A, Ramanadham S, Siou G, Diaz J, McNeill JH, Serrano JJ (1990) Toxicological aspects of vanadyl sulphate on diabetic rats: effects on vanadium levels and pancreatic B-cell morphology. Pharmacol Toxicol 67:192–198

    Article  PubMed  CAS  Google Scholar 

  • Mylroie AA, Collins H, Umbles C, Kyle J (1986) Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 82:512–520

    Article  PubMed  CAS  Google Scholar 

  • Pepato MT, Khalil NM, Giocondo MP, Brunetti IL (2008) Vanadium and its complexes: the renewed interest in its biochemistry. Lat Am J Pharm 27:468–476

    CAS  Google Scholar 

  • Poucheret P, Verma S, Grynpas MD, McNeill JH (1998) Vanadium and diabetes. Mol Cell Biochem 188:73–80

    Article  PubMed  CAS  Google Scholar 

  • Räisänen SR, Lehenkari P, Tasanen M, Rahkila P, Härkönen PL, Väänänen HK (1999) Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. FASEB J 13:513–522

    PubMed  Google Scholar 

  • Ravi K, Ramachandran B, Subramanian S (2004) Protective effect of Eugenia jambolana seed kernel on tissue antioxidants in streptozotocin-induced diabetic rats. Biol Pharm Bull 27:1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Rehder D (2003) Biological and medicinal aspects of vanadium. Inorg Chem Commun 6:604–617

    Article  CAS  Google Scholar 

  • Relander A, Raiha CE (1963) Differences between the enzymatic and toluidine methods of blood glucose determination. Scand J Clin Lab Invest 15:221–224

    Article  CAS  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  • Roman RM, Wendland AE, Polanczyk CA (2007) Myeloperoxidase and coronary arterial disease: from research to clinical practice. Arq Bras Cardiol 91:e11–e18

    Google Scholar 

  • Sakurai H, Tsuchiya K, Nukatsuka M, Sofue M, Kawada J (1990) Insulin-like effect of vanadyl ion on streptozotocin-induced diabetic rats. J Endocrinol 126:451–459

    Article  PubMed  CAS  Google Scholar 

  • Semiz S, Mc Neill JH (2002) Oral treatment with vanadium of Zucker fatty rats activates muscle glycogen synthesis and insulin-stimulated protein phosphatase-1 activity. Mol Cell Biochem 236:123–131

    Article  PubMed  CAS  Google Scholar 

  • Singbartl K, Green SA, Ley K (2000) Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J 14:48–54

    PubMed  CAS  Google Scholar 

  • Singh N, Kamath V, Narasimhamurthy K, Rajini PS (2008) Protective effect of potato peel extract against carbon tetrachloride-induced liver injury in rats. Environ Toxicol Pharmacol 26:241–246

    Article  PubMed  CAS  Google Scholar 

  • Srivastava AK (2000) Anti-diabetic and toxic effects of vanadium compounds. Mol Cell Biochem 206:177–182

    Article  PubMed  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  • Thompson KH (1999) Vanadium and diabetes. Biofactors 10:43–51

    Article  PubMed  CAS  Google Scholar 

  • Thompson KH, Orvig C (2001) Coordination chemistry of vanadium in metallopharmaceutical candidate compounds. Coord Chem Rev 219–221:1033–1053

    Article  Google Scholar 

  • Thompson KH, McNeill JH, Orvig C (1999) Vanadium compounds as insulin mimics. Chem Rev 99:2561–2571

    Article  PubMed  CAS  Google Scholar 

  • Tsiani E, Fantus IG (1997) Vanadium compounds biological actions and potential as pharmacological agents. Trends Endocrinol Metab 8:51–58

    Article  PubMed  CAS  Google Scholar 

  • Tunali S, Yanardag R (2006) Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats. Pharmacol Res 53:271–277

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte JA, Mehta S, Edsall JT (1967) Esterase activities of human carbonic anhydrases B and C. J Biol Chem 242:4221–4229

    PubMed  CAS  Google Scholar 

  • Wang G, Zhang L, Li Q (2006) Genetic polymorphisms of GSTT1, GSTM1, and NQO1 genes and diabetes mellitus risk in Chinese population. Biochem Biophys Res Commun 341:310–313

    Article  PubMed  CAS  Google Scholar 

  • Wronska-Nofer T, Wisniewska-Knypl J, Dziubaltowska E, Wysznska K (1999) Prooxidative and genotoxic effect of transition metals (cadmium, nickel, chromium, and vanadium) in mice. Trace Elem Electrolyte 16:87–92

    CAS  Google Scholar 

  • Yanardag R, Tunali S (2006) Vanadyl sulfate administration protects the streptozotocin-induced oxidative damage to brain tissue in rats. Mol Cell Biochem 286:153–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayse Can.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurt, O., Ozden, T.Y., Ozsoy, N. et al. Influence of vanadium supplementation on oxidative stress factors in the muscle of STZ-diabetic rats. Biometals 24, 943–949 (2011). https://doi.org/10.1007/s10534-011-9452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9452-3

Keywords

Navigation