Skip to main content
Log in

Some characteristics of membrane Cd2+ transport in rat thymocytes: an analysis using Fluo-3

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Although cadmium-induced apoptosis of lymphocytes is one of common features in the immunotoxicity of cadmium, the membrane pathway for intracellular cadmium accumulation is not fully elucidated. To characterize membrane Cd2+ transport of rat thymocytes, the change in intracellular Cd2+ concentration under various conditions was examined by the use of Fluo-3, a fluorescent probe for monitoring the change in intracellular concentration of divalent metal cations. The membrane Cd2+ transport was estimated by the augmentation of Fluo-3 fluorescence induced by bath application of CdCl2. Lowering temperature strongly suppressed the augmentation of Fluo-3 fluorescence by CdCl2, suggesting that the metabolic process can be involved in membrane Cd2+ transport. External acidification (decreasing pH) and membrane depolarization by adding KCl attenuated the augmentation, indicating the requirement of electrochemical driving force for membrane Cd2+ transport into the cells. Bath application of CaCl2 and ZnCl2 equally decreased the augmentation, suggesting their competition with Cd2+ at the membrane transport. The augmentation by CdCl2 was lesser in the cells treated with N-ethylmaleimide inducing chemical depletion of cellular thiols. The result suggests the contribution of sulfhydryl groups to membrane Cd2+ transport. Taken together, it is suggested that the cells possess a temperature-sensitive membrane Cd2+ pathway, driven by electrochemical gradient of Cd2+ and transmembrane potential, with competitive binding site. Based on the characteristics described above, it is unlikely that the membrane Cd2+ transport in rat thymocytes is attributed to a single transport system although it has characteristics that are similar to those of divalent cation transporter 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Au KW, Siu CW, Lau CP, Tse HF, Li RA (2008) Structural and functional determinants in the S5-P region of HCN-encoded pacemaker channels revealed by cysteine-scanning substitutions. Am J Physiol Cell Physiol 294:C136–C144

    Article  PubMed  CAS  Google Scholar 

  • Borella P, Giardino A (1991) Lead and cadmium at very low doses affect in vitro immune response of human lymphocytes. Environ Res 55:165–177

    Article  PubMed  CAS  Google Scholar 

  • Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann NY Acad Sci 1012:142–152

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Nasi P, Treistman SN (1986) Ethanol effects on voltage-dependent membrane conductances: comparative sensitivity of channel populations in Aplysia neurons. Cell Mol Neurobiol 6:263–279

    Article  PubMed  CAS  Google Scholar 

  • Chikahisa L, Oyama Y (1992) Tri-n-butyltin increases intracellular Ca2+ in mouse thymocytes: a flow-cytometric study using fluorescent dyes for membrane potential and intracellular Ca2+. Pharmacol Toxicol 71:190–195

    Article  PubMed  CAS  Google Scholar 

  • Chikahisa L, Oyama Y, Okazaki E, Noda K (1996) Fluorescent estimation of H2O2-induced changes in cell viability and cellular nonprotein thiol level of dissociated rat thymocytes. Jpn J Pharmacol 71:299–305

    Article  PubMed  CAS  Google Scholar 

  • Chin JH, Goldstein DB (1977) Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes. Mol Pharmacol 13:435–441

    PubMed  CAS  Google Scholar 

  • Cifone MG, Alesse E, Di-Eugenio R, Napolitano T, Morrone S, Paolini R, Satoni G, Santoni A (1989) In vivo cadmium treatment alters natural killer activity and large granular lymphocyte number in the rat. Immunopharmacol 18:149–156

    Article  CAS  Google Scholar 

  • Cota G, Stefani E (1984) Saturation of calcium channels and surface charge effects in skeletal muscle fibres of the frog. J Physiol 351:135–154

    PubMed  CAS  Google Scholar 

  • Daum JR, Shephred DM, Noelle RJ (1993) Immunotoxicology of cadmium and mercury on B-lymphocytes. I. Effects on lymphocyte function. Int J Immunopharmacol 15:383–394

    Article  PubMed  CAS  Google Scholar 

  • Dong S, Shen HM, Ong CN (2001) Cadmium-induced apoptosis and phenotypic changes in mouse thymocytes. Mol Cell Biochem 222:11–20

    Article  PubMed  CAS  Google Scholar 

  • Edwards C (1982) The selectivity of ion channels in nerve and muscle. Neuroscience 7:1335–1366

    Article  PubMed  CAS  Google Scholar 

  • El Azzouzi B, Tsangaris GT, Pellegrini O, Manuel Y, Benveniste J, Thomas Y (1994) Cadmium induces apoptosis in a human T cell line. Toxicol 88:127–139

    Article  CAS  Google Scholar 

  • Endo T (2002) Transport of cadmium across the apical membrane of epithelial cell lines. Comp Biochem Physiol C Toxicol Pharmacol 131:223–229

    Article  PubMed  Google Scholar 

  • Fontaine J, Dewailly É, Benedetti JL, Pereg D, Ayotte P, Déry S (2008) Re-evaluation of blood mercury, lead and cadmium concentrations in the Inuit population of Nunavik (Québec): a cross-sectional study. Environ Health 7:25 http://www.ehjournal.net/content/7/1/25

    Google Scholar 

  • Fujimaki H, Ishido M, Nohara K (2000) Induction of apoptosis in mouse thymocytes by cadmium. Toxicol Lett 115:99–105

    Article  PubMed  CAS  Google Scholar 

  • Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, Moore EG, Hainsworth LN, Umbreit JN, Conrad ME, Feng L, Lis A, Roth JA, Singleton S, Garrick LM (2003) DMT1: a mammalian transporter for multiple metals. Biometals 16:41–54

    Article  PubMed  CAS  Google Scholar 

  • Garrick MD, Kuo HC, Vargas F, Singleton S, Zhao L, Smith JJ, Paradkar P, Roth JA, Garrick LM (2006) Comparison of mammalian cell lines expressing distinct isoforms of divalent metal transporter 1 in a tetracycline-regulated fashion. Biochem J 398:539–546

    Article  PubMed  CAS  Google Scholar 

  • Gerson RJ, Shaikh ZA (1984) Differences in the uptake of cadmium and mercury by rat hepatocyte primary cultures. Role of a sulfhydryl carrier. Biochem Pharmacol 33:199–203

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DL, Ehrenstein G (1969) Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys J 9:447–963

    Article  PubMed  CAS  Google Scholar 

  • Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73:1413–1423

    Article  PubMed  CAS  Google Scholar 

  • Grazia-Cifone M, Alesse E, Procopio A, Paolini R, Di-Eugenio R, Santoni G, Santoni A (1989) Effects of cadmium on lymphocyte activation. Biochem Biophys Acta 1011:25–32

    Article  PubMed  CAS  Google Scholar 

  • Gukovskaya AS, Zinchenko VP (1985) The effects of ionophore A23187 and concanavalin A on the membrane potential of human peripheral blood lymphocytes and rat thymocytes. Biochim Biophys Acta 815:433–440

    Article  PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  • Haase H, Rink L (2009) The immune system and the impact of zinc during aging. Immun Ageing 6:9

    Article  PubMed  Google Scholar 

  • Hagiwara S, Byerly L (1981) Calcium channel. Annu Rev Neurosci 4:69–125

    Article  PubMed  CAS  Google Scholar 

  • Haugland RP (1996) Fluorescent indicators for Zn2+ and other metals. In: Spence M (ed) Handbook of fluorescent probes and research chemicals, 6th edn. Molecular Probes Inc., Eugene, pp 531–540

    Google Scholar 

  • Hille B, Woodhull AM, Shapiro BI (1975) Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci 270:301–318

    Article  PubMed  CAS  Google Scholar 

  • Himeno S, Yanagiya T, Fujishiro H (2009) The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie 91:1218–1222

    Article  PubMed  CAS  Google Scholar 

  • Kao JP, Harootunian AT, Tsien RY (1989) Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem 264:8179–8184

    PubMed  CAS  Google Scholar 

  • Kass RS, Krafte DS (1987) Negative surface charge density near heart calcium channels. Relevance to block by dihydropyridines. J Gen Physiol 89:629–644

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Kim BJ, Woo HN, Kim KW, Kim KB, Kim IK, Jung YK (2000) Cadmium induces caspase-mediated cell death: suppression by Bcl-2. Toxicol 145:27–37

    Article  CAS  Google Scholar 

  • Krocova Z, Macela A, Kroca M, Hernychova L (2000) The immunomodulatory effect(s) of lead and cadmium on the cells immune system in vitro. Toxicol In Vitro 14:33–40

    Article  PubMed  CAS  Google Scholar 

  • Lansman JB, Hess P, Tsien RW (1986) Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J Gen Physiol 88:321–347

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Canary JW (2010) Discrimination between hard metals with soft ligand donor atoms: an on-fluorescence probe for manganese(II). Angew Chem Int Ed 49:7710–7713

    Article  CAS  Google Scholar 

  • Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    PubMed  CAS  Google Scholar 

  • Misra UK, Gawdi G, Akabani G, Pizzo SV (2002) Cadmium-induced DNA synthesis and cell proliferation in macrophages: the role of intracellular calcium and signal transduction mechanisms. Cell Signal 14:327–340

    Article  PubMed  CAS  Google Scholar 

  • Nachshen DA (1984) Selectivity of the Ca binding site in synaptosome Ca channels. Inhibition of Ca influx by multivalent metal cations. J Gen Physiol 83:941–967

    Article  PubMed  CAS  Google Scholar 

  • Ohmori H, Yoshii M (1977) Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane. J Physiol 267:429–463

    PubMed  CAS  Google Scholar 

  • Okazaki E, Chikahisa L, Kanemaru K, Oyama Y (1996) Flow cytometric analysis of the H2O2-induced increase in intracellular Ca2+ concentration of rat thymocytes. Jpn J Pharmacol 71:273–280

    Article  PubMed  CAS  Google Scholar 

  • Olivi L, Sisk J, Bressler J (2001) Involvement of DMT1 in uptake of Cd in MDCK cells: role of protein kinase C. Am J Physiol Cell Physiol 281:C793–C800

    PubMed  CAS  Google Scholar 

  • Oyama Y, Akaike N, Nishi K (1986) Effects of n-alkanols on the calcium current of intracellularly perfused neurons of Helix aspersa. Brain Res 376:280–284

    Article  PubMed  CAS  Google Scholar 

  • Oyama Y, Arata T, Chikahisa L, Soeda F, Takahama K (2002) Estimation of increased concentration of intracellular Cd2+ by fluo-3 in rat thymocytes exposed to CdCl2. Environ Toxicol Pharmacol 11:111–118

    Article  PubMed  CAS  Google Scholar 

  • Pathak N, Khandelwal (2007) Role of oxidative stress and apoptosis in cadmium induced thymic atrophy and splenomegaly in mice. Toxicol Lett 169:95–108

    Article  PubMed  CAS  Google Scholar 

  • Premkumar LS, Auerbach A (1996) Identification of a high affinity divalent cation binding site near the entrance of the NMDA receptor channel. Neuron 16:869–880

    Article  PubMed  CAS  Google Scholar 

  • Rega AF, Rothstein A, Weed RI (1967) Erythrocyte membrane sulfhydryl groups and the active transport of cations. J Cell Physiol 70:45–52

    Article  PubMed  CAS  Google Scholar 

  • Root MJ, MacKinnon R (1993) Identification of an external divalent cation-binding site in the pore of a cGMP-activated channel. Neuron 11:459–466

    Article  PubMed  CAS  Google Scholar 

  • Schäfer T, Benters J, Beyersmann D (1994) Cadmium uptake and interference with receptor-mediated calcium mobilization in PC12 cells. In: Collery P, Poirier LA, Littlefield NA, Etienne JC (eds) Metal ions in biology and medicine. John Libbey Eurotext, Paris, pp 149–154

    Google Scholar 

  • Soh H, Park CS (2002) Localization of divalent cation-binding site in the pore of a small conductance Ca2+-activated K+ channel and its role in determining current-voltage relationship. Biophys J 83:2528–2538

    Article  PubMed  CAS  Google Scholar 

  • Souza V, Bucio L, Gutiérrez-Ruiz MC (1997) Cadmium uptake by a human hepatic cell line (WRL-68 cells). Toxicol 120:215–220

    Article  CAS  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  PubMed  CAS  Google Scholar 

  • Tsangaris GT, Tzortzatou-Stathopoulou F (1998) Cadmium induces apoptosis differentially on immune system cell lines. Toxicol 128:143–150

    Article  CAS  Google Scholar 

  • Viau M, Collin-Faure V, Richaud P, Ravanat JL, Candéias SM (2007) Cadmium and T cell differentiation: limited impact in vivo but significant toxicity in fetal thymus organ culture. Toxicol Appl Pharmacol 223:257–266

    Article  PubMed  CAS  Google Scholar 

  • Wilson HA, Chused TM (1985) Lymphocyte membrane potential and Ca2+-sensitive potassium channels described by oxonol dye fluorescence measurements. J Cell Physiol 125:72–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the reviewer for the comments concerning some additional experiments.

Conflict of interest

We have no conflicts of interest on this study. This study was carried out by the institutional expenditure (University of Tokushima).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Oyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawanai, T., Fujinaga, M., Koizumi, K. et al. Some characteristics of membrane Cd2+ transport in rat thymocytes: an analysis using Fluo-3. Biometals 24, 903–914 (2011). https://doi.org/10.1007/s10534-011-9444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9444-3

Keywords

Navigation