Skip to main content
Log in

Heterogenous distribution of ferroportin-containing neurons in mouse brain

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron is crucial for a variety of cellular functions in neuronal cells. Neuronal iron uptake is reflected in a robust and consistent expression of transferrin receptors and divalent metal transporter 1 (DMT 1). Conversely, the mechanisms by which neurons neutralize and possibly excrete iron are less clear. Studies indicate that neurons express ferroportin which could reflect a mechanism for iron export. We mapped the distribution of ferroportin in the adult mouse brain using an antibody prepared from a peptide representing amino acid sequences 223–303 of mouse ferroportin. The antibody specifically detected ferroportin in brain homogenates, whereas homogenates of cultured endothelial cells were devoid of immunoreactivity. In brain sections, ferroportin was confined to neuronal cell bodies and peripheral processes of cerebral cortex, hippocampus, thalamus, brain stem, and cerebellum. In brain stem ferroportin-labeling was particularly high in neurons of cranial nerve nuclei and reticular formation. Ferroportin was hardly detectable in striatum, pallidum, or hypothalamus. Among non-neuronal cells, ferroportin was detected in oligodendrocytes and choroid plexus epithelial cells. A comparison with previous studies on the distribution of transferrin receptors in neurons shows that many neuronal pools coincide with those expressing ferroportin. The data therefore indicate that neuronal iron homeostasis consists of a delicate balance between transferrin receptor-mediated uptake of iron-transferrin and ferroportin-related iron excretion. The findings also suggest a particular high turnover of iron in neuronal regions, such as habenula, hippocampus, reticular formation and cerebellum, as several neurons in these regions exhibit a prominent co-expression of transferrin receptors and ferroportin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

3N:

Oculomotor nucleus

3V:

3rd ventricle

5N:

Motor trigeminal nucleus

7N:

Facial nucleus

M1:

Primary motor cortex

Amb:

Ambiguus nucleus

bEnd3:

Mouse brain endothelial cells

CA1:

Field CA1 of Ammon’s horn

CA2:

Field CA2 of Ammon’s horn

CA3:

Field CA3 of Ammon’s horn

cc:

Corpus callosum

CP:

Choroid plexus

D3V:

Dorsal part of the third ventricle

DAB:

3,3-Diaminobenzidine tetrahydrochloride

DG:

Dentate gyrus

DMT 1:

Divalent metal transporter 1

DR:

Dorsal raphe nucleus

EPl:

External plexiform layer of the olfactory bulb

EPlA:

External plexiform layer of the accessory olfactory bulb

Fpn-ir:

Ferroportin-immunoreactivity

Gl:

Glomerular layer of the olfactory bulb

GrO:

Granular cell layer of the olfactory bulb

hbc:

Habenular commissure

hi:

Habenulo-interpeduncular tract

IntP:

Interposed cerebellar nucleus posterior part

IG:

Induseum griseum

IP:

Interpeduncular nucleus

IPl:

Internal plexiform layer of the olfactory bulb

Lat:

Lateral cerebellar nucleus

LC:

Locus coeruleus

LHb:

Lateral habenular nucleus

ME:

Median eminence

Med:

Medial cerebellar nucleus

MHb:

Medial habenular nucleus

Mi:

Mitral cell layer of the olfactory bulb

Pir:

Piriform cortex

PPBS:

Potassium phosphate-buffered saline

Rbd:

Rhabdoid nucleus

RT:

Reverse transcriptase

TSA:

Tyramid signal amplification

UTR:

Untranslated region

VM:

Ventral medial thalamic nucleus

References

  • Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912

    Article  PubMed  CAS  Google Scholar 

  • Adamek GD, Shipley MT, Sanders MS (1984) The indusium griseum in the mouse: architecture, Timm’s histochemistry and some afferent connections. Brain Res Bull 12:657–668

    Article  PubMed  CAS  Google Scholar 

  • Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis 16:879–895

    PubMed  Google Scholar 

  • Balin BJ, Broadwell RD, Salcman M, el-Kalliny M (1986) Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol 251:260–280

    Article  PubMed  CAS  Google Scholar 

  • Benkovic SA, Connor JR (1993) Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol 338:97–113

    Article  PubMed  CAS  Google Scholar 

  • Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66:1198–1207

    Article  PubMed  CAS  Google Scholar 

  • Chua AC, Graham RM, Trinder D, Olynyk JK (2007) The regulation of cellular iron metabolism. Crit Rev Clin Lab Sci 44:413–459

    Article  PubMed  CAS  Google Scholar 

  • Clardy SL, Wang X, Boyer PJ, Earley CJ, Allen RP, Connor JR (2006) Is ferroportin-hepcidin signaling altered in restless legs syndrome? J Neurol Sci 247:173–179

    Article  PubMed  CAS  Google Scholar 

  • Crichton R (2009) Iron metabolism: from molecular mechanisms to clinical consequences. Wiley, Chichester

    Google Scholar 

  • De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan J (2007) Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 26:2823–2831

    Article  PubMed  Google Scholar 

  • Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin 1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  PubMed  CAS  Google Scholar 

  • Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC (2005) The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1:191–200

    Article  PubMed  CAS  Google Scholar 

  • Farcich EA, Morgan EH (1992) Diminished iron acquisition by cells and tissues of Belgrade laboratory rats. Am J Physiol 262:R220–R224

    PubMed  CAS  Google Scholar 

  • Focht SJ, Snyder BS, Beard JL, Van Gelder W, Williams LR, Connor JR (1997) Regional distribution of iron, transferrin, ferritin, and oxidatively-modified proteins in young and aged Fischer 344 rat brains. Neuroscience 79:255–261

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Gosk S, Moos T, Gottstein C, Bendas G (2008) VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim Biophys Acta 1778:854–863

    Article  PubMed  CAS  Google Scholar 

  • Hamilton KA, Heinbockel T, Ennis M, Szabó G, Erdélyi F, Hayar A (2005) Properties of external plexiform layer interneurons in mouse olfactory bulb slices. Neuroscience 133:819–829

    Article  PubMed  CAS  Google Scholar 

  • Hansen TM, Nielsen H, Bernth N, Moos T (1999) Expression of ferritin protein and subunit mRNAs in normal and iron deficient rat brain. Brain Res Mol Brain Res 65:18–197

    Article  Google Scholar 

  • Huang E, Ong WY, Go ML, Connor JR (2006) Upregulation of iron regulatory proteins and divalent metal transporter-1 isoforms in the rat hippocampus after kainate induced neuronal injury. Exp Brain Res 170:376–386

    Article  PubMed  CAS  Google Scholar 

  • Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148

    Article  PubMed  CAS  Google Scholar 

  • Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, David S (2009) Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci 29:610–619

    Article  PubMed  CAS  Google Scholar 

  • Klomp LW, Farhangrazi ZS, Dugan LL, Gitlin JD (1996) Ceruloplasmin gene expression in the murine central nervous system. J Clin Invest 98:207–215

    Article  PubMed  CAS  Google Scholar 

  • Koeppen AH, Michael SC, Knutson MD, Haile DJ, Qian J, Levi S, Santambrogio P, Garrick MD, Lamarche JB (2007) The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins. Acta Neuropathol 114:163–173

    Article  PubMed  CAS  Google Scholar 

  • Lis A, Barone TA, Paradkar PN, Plunkett RJ, Roth JA (2004) Expression and localization of different forms of DMT1 in normal and tumor astroglial cells. Brain Res Mol Brain Res 122:62–70

    Article  PubMed  CAS  Google Scholar 

  • McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309

    Article  PubMed  CAS  Google Scholar 

  • Moos T (1996) Immunohistochemical localization of intraneuronal transferrin receptor immunoreactivity in the adult mouse central nervous system. J Comp Neurol 25:675–692

    Article  Google Scholar 

  • Moos T, Morgan EH (1998) Kinetics and distribution of [59Fe-125I]transferrin injected into the ventricular system of the rat. Brain Res 790:115–128

    Article  PubMed  CAS  Google Scholar 

  • Moos T, Rosengren Nielsen T (2006) Ferroportin in the postnatal rat brain: implications for axonal transport and neuronal export of iron. Semin Pediatr Neurol 13:149–157

    Article  PubMed  Google Scholar 

  • Moos T, Oates PS, Morgan EH (1998) Expression of the neuronal transferrin receptor is age dependent and susceptible to iron deficiency. J Comp Neurol 398:420–430

    Article  PubMed  CAS  Google Scholar 

  • Moos T, Skjoerringe T, Gosk S, Morgan EH (2006) Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. J Neurochem 98:1946–1958

    Article  PubMed  CAS  Google Scholar 

  • Moos T, Rosengren Nielsen T, Skjørringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103:1730–1740

    Article  PubMed  CAS  Google Scholar 

  • Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  PubMed  CAS  Google Scholar 

  • Patel BN, David S (1997) A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J Biol Chem 272:20185–20190

    Article  PubMed  CAS  Google Scholar 

  • Rouault TA, Cooperman S (2006) Brain iron metabolism. Semin Pediatr Neurol 13:142–148

    Article  PubMed  Google Scholar 

  • Rouault TA, Zhang DL, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24:673–684

    Article  PubMed  CAS  Google Scholar 

  • Todorich B, Zhang X, Slagle-Webb B, Seaman WE, Connor JR (2008) Tim-2 is the receptor for H-ferritin on oligodendrocytes. J Neurochem 107:1495–1505

    Article  PubMed  CAS  Google Scholar 

  • Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478

    Article  PubMed  Google Scholar 

  • Wang SM, Fu LJ, Duan XL, Crooks DR, Yu P, Qian ZM, Di XJ, Li J, Rouault TA, Chang YZ (2009) Role of hepcidin in murine brain iron metabolism. Cell Mol Life Sci 67:123–133

    Article  PubMed  Google Scholar 

  • West AE, Neve RL, Buckley KM (1997) Identification of a somatodendritic targeting signal in the cytoplasmic domain of the transferrin receptor. J Neurosci 17:6038–6047

    PubMed  CAS  Google Scholar 

  • Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier. Brain Res 1001:108–117

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Su B, Wang X, Smith MA, Perry G (2007) Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci 64:2202–2210

    Article  PubMed  CAS  Google Scholar 

  • Zohn IE, De Domenico I, Pollock A, Ward DM, Goodman JF, Liang X, Sanchez AJ, Niswander L, Kaplan J (2007) The flatiron mutation in mouse ferroportin acts as a dominant negative to cause ferroportin disease. Blood 109:4174–4180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Susan Peters at University of Copenhagen, Denmark and Merete Fredsgaard, Aalborg University, Denmark for excellent technical assistance. Murine brain endothelioma cells, bEnd3, were kindly obtained from Dr. Sara Gosk, University of Bonn, Germany. This work was supported by grants from the Lundbeck Fund, the Danish Parkinson’s Disease Fund, the Carlsberg Foundation, the Spar Nord Fund, and the Obelske Familiefond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben Moos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boserup, M.W., Lichota, J., Haile, D. et al. Heterogenous distribution of ferroportin-containing neurons in mouse brain. Biometals 24, 357–375 (2011). https://doi.org/10.1007/s10534-010-9405-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9405-2

Keywords

Navigation