Skip to main content
Log in

Effects of tellurite on growth of Saccharomyces cerevisiae

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The effects of potassium tellurite on growth and survival of rho+ and rho0 Saccharomyces cerevisiae strains were investigated. Both rho+ and rho0 strains grew on a fermentable carbon source with up to 1.2 mM K2TeO3, while rho+ yeast cells grown on a non-fermentable carbon source were inhibited at tellurite levels as low as 50 μM suggesting that this metalloid specifically inhibited mitochondrial functions. Growth of rho+ yeast cells in the presence of increasing amount of tellurite resulted in dose-dependent blackening of the culture, a phenomenon not observed with rho0 cultures. Transmission electron microscopy of S. cerevisiae rho+ cells grown in the presence of tellurite showed that blackening was likely due to elemental tellurium (Te0) that formed large deposits along the cell wall and small precipitates in both the cytoplasm and mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baesman SM, Bullen TD, Dewald J, Zhang D, Curran S, Islam FS, Beveridge TJ, Oremland RS (2007) Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanion as respiratory electron acceptors. Appl Environ Microbiol 73:2135–2143. doi:10.1128/AEM.02558-06

    Article  CAS  PubMed  Google Scholar 

  • Borghese R, Borsetti F, Foladori P, Ziglio G, Zannoni D (2004) Effects of the metalloid oxyanion tellurite (TeO3 2−) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus. Appl Environ Microbiol 70:6595–6602. doi:10.1128/AEM.70.11.6595-6602.2004

    Article  CAS  PubMed  Google Scholar 

  • Borghese R, Marchetti D, Zannoni D (2008) The highly toxic oxyanion tellurite (TeO3 2−) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system. Arch Microbiol 189:93–100. doi:10.1007/s00203-007-0297-7

    Article  CAS  PubMed  Google Scholar 

  • Cooper WC (1971) Tellurium. Van Nostrand Renhod Co, New York

    Google Scholar 

  • Csotonyi JT, Stackebrandt E, Yurkov V (2006) Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean. Appl Environ Microbiol 72:4950–4956. doi:10.1128/AEM.00223-06

    Article  CAS  PubMed  Google Scholar 

  • Del Giudice L, Massardo DR, Pontieri P, Wolf K (2005) Interaction between yeast mitochondrial and nuclear genomes: Null alleles of RTG genes affect resistance to the alkaloid lycorine in rho0 petites of Saccharomyces cerevisiae. Gene 354:9–14. doi:10.1016/j.gene.2005.03.020

    Article  PubMed  Google Scholar 

  • Gharieb MM, Gadd GM (1998) Evidence for the involvement of vacuolar activity in metal (loid) tolerance: vacuolar-lacking and -defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. Biometals 11:101–106. doi:10.1023/A:1009221810760

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425. doi:10.1016/S0168-644(03)00044-5

    Article  CAS  PubMed  Google Scholar 

  • Ollivier PR, Bahrou AS, Marcus S, Cox T, Church TM, Hanson TE (2008) Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes. Appl Environ Microbiol 74:7163–7173. doi:101128/AEM.00733-08

    Article  CAS  PubMed  Google Scholar 

  • Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115. doi:10.1016/S0966-842X(99)01454-7

    Article  CAS  PubMed  Google Scholar 

  • Taylor DE, Hou Y, Turner RJ, Weiner JH (1994) Location of a potassium tellurite resistance operon (tehAtehB) within the terminus of Escherichia coli K-12. J Bacteriol 176:2740–2742

    CAS  PubMed  Google Scholar 

  • Toptchieva A, Sisson G, Bryden LJ, Taylor DE, Hoffman PS (2003) An inducible tellurite-resistance operon in Proteus mirabilis. Microbiology 149:1285–1295. doi:10.1099/mic.0.25981-0

    Article  CAS  PubMed  Google Scholar 

  • Trutko SM, Akimenko VK, Suzina NE, Anisimova LA, Shlyapnikov MG, Baskunov BP, Duda VI, Boronin AM (2000) Involvement of the respiratory chain of gram-negative bacteria in the reduction of tellurite. Arch Microbiol 173:178–186. doi:10.1007/S002039900123

    Article  CAS  PubMed  Google Scholar 

  • Turner RJ, Aharonowitz Y, Weiner JH, Taylor DE (2001) Glutathione is a target in bacterial tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47:33–40

    Article  CAS  PubMed  Google Scholar 

  • Zannoni D, Borsetti F, Harrison JJ, Turner RJ (2008) The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol 53:1–72. doi:10.1016/S0065-2911(07)53001-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by Compagnia di San Paolo special grant “iniziativa” to L. Del Giudice. P. Pontieri was supported by a postdoctoral grant from the Istituto Banco di Napoli, Fondazione.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Del Giudice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massardo, D.R., Pontieri, P., Maddaluno, L. et al. Effects of tellurite on growth of Saccharomyces cerevisiae . Biometals 22, 1089–1094 (2009). https://doi.org/10.1007/s10534-009-9259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9259-7

Keywords

Navigation