Skip to main content
Log in

In vitro inhibition of Saccharomyces cerevisiae growth by Metschnikowia spp. triggered by fast removal of iron via two ways

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Simple and convenient innovative assays in vitro demonstrating Metschnikowia spp. competition with Saccharomyces cerevisiae for an essential nutrient iron are presented. The tested Metschnikowia strains possess a common genetically determined property of secreting a pulcherriminic acid which in the presence of iron (III) ions forms an insoluble red pigment pulcherrimin. Both initial accumulation in growing Metschnikowia cells and subsequent precipitation in the form of pulcherrimin in the media contribute to iron removal by functioning cells. The predominant way depends on the strain. Due to fast elimination of iron, the growth of S. cerevisiae can be inhibited by tested Metschnikowia strains at concentrations of elemental iron in the media not exceeding 12 mg kg−1. Inhibition can be regulated by additional supply of microquantities of iron onto the surface of the solid medium within 20–24 h. At relatively low concentrations of elemental iron (below 1 mg kg−1), additional supplements of iron onto the surface provide an advancement in understanding the inhibition possibilities and enable the assay control. Microscopy observations revealed that Metschnikowia chlamydospores are involved in iron removal at relatively high iron concentrations. The results may find application in development of new methodologies and strategies for biocontrol or inhibition of pathogenic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buzzini P, Lachance MA, Yurkov A (2017) Yeasts in natural ecosystems: ecology. Springer, Cham

    Book  Google Scholar 

  2. Spadaro D, Gullino ML (2004) State of the art and future prospects of the biological control of postharvest fruit diseases. Int J Food Microbiol 91:185–194. https://doi.org/10.1016/S0168-1605(03)00380-5

    Article  PubMed  Google Scholar 

  3. Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145. https://doi.org/10.1016/j.postharvbio.2008.11.009

    Article  Google Scholar 

  4. Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists. Biol Control 50:205–211. https://doi.org/10.1016/j.biocontrol.2009.05.001

    Article  Google Scholar 

  5. Liu J, Sui Y, Wisniewski M, Droby S, Liu Y (2013) Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167:153–160. https://doi.org/10.1016/j.ijfoodmicro.2013.09.004

    Article  PubMed  Google Scholar 

  6. Droby S, Wisniewski M, Teixido N, Spadaro D, Jijakli HM (2016) The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol Technol 122:22–29. https://doi.org/10.1016/j.postharvbio.201604.006

    Article  Google Scholar 

  7. Wisniewski M, Droby S, Norelli J, Liu J, Schena L (2016) Alternative management technologies for postharvest disease control: the journey from simplicity to complexity. Postharvest Biol Technol 122:3–10. https://doi.org/10.1016/j.postharvbio.2016.05.012

    Article  Google Scholar 

  8. Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q (2019) Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol 35:154. https://doi.org/10.1007/s11274-019-2728-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kluyver AJ, Van der Walt JP, Van Triet J (1953) Pulcherrimin, the pigment of Candida pulcherrima. Proc Natl Acad Sci U S A 39:583–593

    Article  CAS  Google Scholar 

  10. Cook AH, Slater CA (1956) The structure of pulcherrimin. J Chem Soc:4133–4135

  11. Janisiewicz WJ, Tworkoski TJ, Kurtzman CP (2001) Biocontrol potential of Metschnikowia pulcherrima strains against blue mold of apple. Phytopathology 91: 1098–1108

  12. Spadaro D, Vola R, Piano S, Gullino ML (2002) Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biol Technol 24:123–134

    Article  Google Scholar 

  13. Sipiczki M (2006) Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol 72:6716–6724. https://doi.org/10.1128/AEM.01275-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saravanakumar D, Ciavorella A, Spadaro D, Garibaldi A, Gullino ML (2008) Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternate and Penicillium expansum in apples through iron depletion. Postharvest Biol Technol 49:121–128. https://doi.org/10.1016/j.postharvbio.2007.11.006

    Article  CAS  Google Scholar 

  15. Turkel S, Ener B (2009) Isolation and characterization of new Metschnikowia pulcherrima strains as producers of the antimicrobial pigment pulcherrimin. Z Naturforsch C 64:405–410

    Article  CAS  Google Scholar 

  16. Csutak O, Vassu T, Sarbu I, Stoica J, Cornea P (2013) Antagonistic activity of three newly isolated yeast strains from the surface of fruits. Food Technol Biotechnol 51:70–77

    Google Scholar 

  17. Oro L, Ciani M, Comitini F (2014) Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J Appl Microbiol 116:1209–1217. https://doi.org/10.1111/jam.12446

    Article  CAS  PubMed  Google Scholar 

  18. Kantor A, Hutkova J, Petrova J, Hleba L, Kacaniova M (2015) Antimicrobial activity of pulcherrimin pigment produced by Metschnikowia pulcherrima against various yeast species. J Microbiol Biotechnol Food Sci 5:282–285. https://doi.org/10.15414/jmbfs.2015/16.5.3.282-285

    Article  CAS  Google Scholar 

  19. Gore-Lloyd D, Sumann I, Brachmann AO, Schneeberger K, Ortiz-Merino RA, Moreno-Beltran M, Schlafli M, Kirner P, Santos Kron A, Rueda-Mejia MP, Somervill V, Wolfe KH, Piel J, Ahrens CH, Henk D, Freimoser FM (2019) Snf2 controls pulcherriminic acid biosynthesis and antifungal activity of the biocontrol yeast Metschnikowia pulcherrima. Mol Microbiol 112:317–332. https://doi.org/10.1111/mmi.14272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saravanakumar D, Spadaro D, Garibaldi A, Gullino ML (2009) Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. Eur J Plant Patho 123:183–193. https://doi.org/10.1007/s10658-008-9355-5

    Article  CAS  Google Scholar 

  21. Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92. https://doi.org/10.1016/j.fm.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  22. Parafati L, Vitale A, Restuccia C, Cirvilleri G (2017) Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Food Microbiol 63:191–198. https://doi.org/10.1016/j.fm.2016.11.021

    Article  CAS  PubMed  Google Scholar 

  23. Oro L, Feliziani E, Ciani M, Romanazzi G, Comitini F (2018) Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima, and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. Int J Food Microbiol 265:18–22. https://doi.org/10.1016/j.ifoodmicro.2017.10.027

    Article  CAS  PubMed  Google Scholar 

  24. Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating mechanisms of action on yeast antagonists. Trends Food Sci Technol 47:39–49. https://doi.org/10.1016/j.tifs.2015.11.003

    Article  CAS  Google Scholar 

  25. Krause DJ, Kominek J, Opulente DA, Shen XX, Zhou X, Langdon QK, DeVirgillio J, Kurtzman CP, Rokas A, Hittinger CT (2018) Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. PNAS 115:11030–11035. https://doi.org/10.1073/pnas.1806268115

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Yao S, Deng L, Ming J, Zeng K (2019) Different mechanisms of action of isolated epiphytic yeasts against Penicillium digitatum and Penicillium italicum on citrus fruit. Postharvest Biol Technol 152:100–110. https://doi.org/10.1016/j.postharvbio.2019.03.002

    Article  Google Scholar 

  27. Murphy A, Kavanagh K (1999) Emergence of Saccharomyces cerevisiae as a human pathogen. Implications for biotechnology. Enz Microbiol Technol 25:551–557

    Article  CAS  Google Scholar 

  28. Diezmann S, Dietrich FS (2009) Saccharomyces cerevisiae: population divergence and resistance to oxidative stress in clinical, domesticated and wild isolates. PLoS One 4:e5317. https://doi.org/10.1371/journal.pone.0005317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Torrado R, Querol A (2016) Opportunistic strains of Saccharomyces cerevisiae: a potential risk sold in food products. Front Microbiol 6:1522. https://doi.org/10.3389/fmicb.2015.01522

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xue ML, Zhang LQ, Wang QM, Zhang J, Bai FY (2006) Metschnikowia sinensis sp. nov., Metschnikowia zizyphicola sp. nov. and Metschnikowia shanxiensis sp. nov., novel yeast species from jujube fruit. Int J Syst Evol Microbiol 56:2245–2250. https://doi.org/10.1099/ljs.064391-0

    Article  CAS  PubMed  Google Scholar 

  31. Lachance MA (2016) Metschnikowia: half tetrads, a regicide and the fountain of youth. Yeast 33:563–574. https://doi.org/10.1002/yea.3208

    Article  CAS  PubMed  Google Scholar 

  32. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. A van Leeuwenhoek 73:331–371

    Article  CAS  Google Scholar 

  33. Boekhout T, Robert V (2003) Yeasts in food: beneficial and detrimental aspects. Behr’s Verlag, Hamburg

    Book  Google Scholar 

  34. Melvydas V, Bruzauskaite I, Gedminiene G, Siekstele R (2016) A novel Saccharomyces cerevisie killer strain secreting the X factor related to killer activity and inhibition of S. cerevisiae K1, K2 and K28 killer toxins. Indian J Microbiol 56:335–343. https://doi.org/10.1007/s12088-016-0589-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Melvydas V, Staneviciene R, Balynaite A, Vaiciuniene J, Garjonyte R (2016) Formation of self-organized periodic patterns around yeasts secreting a precursor of a red pigment. Microbiol Res 193:87–93. https://doi.org/10.1016/jmicres.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  36. Pawlikowska E, Jame SA, Breeirova E, Antolak H, Kregiel D (2019) Biocontrol capability of local Metschnikowia sp. isolates. A van Leeuwenhoek 112:1425–1445. https://doi.org/10.1007/s10482-019-01272-w

    Article  CAS  Google Scholar 

  37. MacDonald JC (1965) The structure of pulcherriminic acid. Can J Chem 41:165–172

    Article  Google Scholar 

  38. Bailao EFL, de Sousa LP, Silva-Bailao MG, Bailao AM, da Rocha FG, Kosman D, da Almeida Soares CM (2015) Paracoccidioides spp. ferrous and ferric ion assimilation pathways. Front Microbiol 6:821. https://doi.org/10.3389/fmicb.2015.00821

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bairwa G, Jung WH, Kronstad JW (2017) Iron acquisition in fungal pathogens of humans. Metallomics 9:215–227. https://doi.org/10.1039/c6mt00301j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaplan CD, Kaplan J (2009) Iron acquisition and transcriptional regulation. Chem Rev 109:4536–4552

    Article  CAS  Google Scholar 

  41. Cockrell AL, Holmes-Hampton GP, McCormic SP, Chakrabarti M, Lindhal PA (2011) Mosbauer and EPR study of iron in vacuoles from fermenting Saccharomyces cerevisiae. Biochemistry 50:10275–10283. https://doi.org/10.1021/bi2014954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spadaro D, Ciavorella A, Dianpeng Z, Garibaldi A, Gullino ML (2010) Effect of culture media and pH on the biomass and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control. Can J Microbiol 56:128–137. https://doi.org/10.1139/W09-117

    Article  CAS  PubMed  Google Scholar 

  43. Gulbiniene G, Kondratiene L, Jokantaite T, Serviene E, Melvydas V, Petkuniene G (2004) Occurrence of killer yeast strains in fruit and berry wine yeast populations. Food Technol Biotechnol 42:159–163

    CAS  Google Scholar 

  44. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study. Elsevier, 5th edition

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Vytautas Melvydas: conceived and designed the study, performed research, analyzed data; Grazina Skridlaite: performed research, analyzed data. Jurgita Svediene: performed research, analyzed data, Jurate Vaiciuniene: performed research, Rasa Garjonyte: wrote the paper.

Corresponding author

Correspondence to Rasa Garjonyte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Derlene Attili Agellis.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melvydas, V., Svediene, J., Skridlaite, G. et al. In vitro inhibition of Saccharomyces cerevisiae growth by Metschnikowia spp. triggered by fast removal of iron via two ways. Braz J Microbiol 51, 1953–1964 (2020). https://doi.org/10.1007/s42770-020-00357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00357-3

Keywords

Navigation