Skip to main content
Log in

Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Pseudomonas entomophila L48 is a recently identified entomopathogenic bacterium which, upon ingestion, kills Drosophila melanogaster, and is closely related to P. putida. The complete genome of this species has been sequenced and therefore a genomic, genetic and structural analysis of the siderophore-mediated iron acquisition was undertaken. P. entomophila produces two siderophores, a structurally new and unique pyoverdine and the secondary siderophore pseudomonine, already described in P. fluorescens species. Structural analysis of the pyoverdine produced by the closely related P. putida KT2440 showed that this strain produces an already characterised pyoverdine, but different from P. entomophila, and no evidence was found for the production of a second siderophore. Growth stimulation assays with heterologous pyoverdines demonstrated that P. entomophila is able to utilize a large variety of structurally distinct pyoverdines produced by other Pseudomonas species. In contrast, P. putida KT2440 is able to utilize only its own pyoverdine and the pyoverdine produced by P. syringae LMG 1247. Our data suggest that although closely related, P. entomophila is a more efficient competitor for iron than P. putida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anthoni U, Christophersen C, Nielsen PH, Gram L, Petersen BO (1995) Pseudomonine, an isoxazolidone with siderophoric activity from Pseudomonas fluorescens AH2 isolated from Lake Victorian Nile perch. J Nat Prod 58:1786–1789. doi:10.1021/np50125a026

    Article  CAS  Google Scholar 

  • Barelmann I, Taraz K, Budzikiewicz H, Geoffroy VA, Meyer JM (2002) The structures of the pyoverdins from two Pseudomonas fluorescens strains accepted mutually by their respective producers. Z Naturforsch 57c:9–16

    Google Scholar 

  • Beiderbeck H, Taraz K, Meyer JM (1999) Revised structures of the pyoverdins from Pseudomonas putida CFBP 2461 and from Pseudomonas fluorescens CFBP 2392. Biometals 12:331–338. doi:10.1023/A:1009227520314

    Article  CAS  PubMed  Google Scholar 

  • Briskot G, Taraz K, Budzikiewicz H (1986) Pyoverdine-type siderophores from Pseudomonas aeruginosa. Z Naturforsch C 41:497–506

    CAS  PubMed  Google Scholar 

  • Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104:209–228. doi:10.1111/j.1574-6968.1993.tb05868.x

    Article  CAS  Google Scholar 

  • Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z Naturforsch [C] 52:713–720

    CAS  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798. doi:10.1046/j.1462-2920.2002.00369.x

    Article  CAS  PubMed  Google Scholar 

  • Cox CD, Graham R (1979) Isolation of an iron-binding compound from Pseudomonas aeruginosa. J Bacteriol 137:357–364

    CAS  PubMed  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249. doi:10.1128/MMBR.66.2.223-249.2002

    Article  CAS  PubMed  Google Scholar 

  • de Chial M, Ghysels B, Beatson SA, Geoffroy V, Meyer J-M, Pattery T, Baysse C, Chablain P, Parsons YN, Winstanley C, Cordwell SJ, Cornelis P (2003) Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology 149:821–831. doi:10.1099/mic.0.26136-0

    Article  PubMed  Google Scholar 

  • Demange P, Bateman A, Mertz C, Dell A, Piémont Y, Abdullah M (1990) Structures of pyoverdins Pt, siderophores of Pseudomonas tolaasii NCPPB 2192, and pyoverdins Pf, siderophores of Pseudomonas fluorescens CCM 2798. Identification of an unusual natural amino acid. Biochemistry 29:11041–11051. doi:10.1021/bi00502a005

    Article  CAS  PubMed  Google Scholar 

  • Dennis JJ, Zylstra GJ (1998) Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64:2710–2715

    CAS  PubMed  Google Scholar 

  • Ge L, Seah SY (2006) Heterologous expression, purification, and characterization of an L-ornithine N 5-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa. J Bacteriol 188:7205–7210. doi:10.1128/JB.00949-06

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. doi:10.1016/S0022-2836(83)80284-8

    Article  CAS  PubMed  Google Scholar 

  • Höfte M, Buysens S, Koedam N, Cornelis P (1993) Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6:85–91. doi:10.1007/BF00140108

    Article  PubMed  Google Scholar 

  • Jülich M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM, Gardan L (2001) The structure of the pyoverdin isolated from various Pseudomonas syringae pathovars. Z Naturforsch 56c:687–694

    Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1992) Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl Environ Microbiol 58:119–124

    CAS  PubMed  Google Scholar 

  • Koedam N, Wittouck E, Gaballa A, Gillis A, Höfte M, Cornelis P (1994) Detection and differentiation of microbial siderophores by isoelectric focusing and chrome azurol S overlay. Biometals 7:287–291. doi:10.1007/BF00144123

    Article  CAS  PubMed  Google Scholar 

  • Matthijs S, Abbaspour Tehrani K, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434. doi:10.1111/j.1462-2920.2006.01154.x

    Article  CAS  PubMed  Google Scholar 

  • Matthijs S, Budzikiewicz H, Schäfer M, Whatelet B, Cornelis P (2008) Ornicorrugatin, a new siderophore from Pseudomonas fluorescens AF76. Z Naturforsch 63:8–12

    CAS  Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in the biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920. doi:10.1128/JB.183.6.1909-1920.2001

    Article  CAS  PubMed  Google Scholar 

  • Meyer J-M (1992) Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: possible involvement of porin OprF in iron translocation. J Gen Microbiol 138:951–958

    CAS  PubMed  Google Scholar 

  • Meyer J-M, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328

    CAS  Google Scholar 

  • Meyer J-M, Gruffaz C, Raharinosy V, Bezverbnaya I, Schäfer M, Budzikiewicz H (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271. doi:10.1007/s10534-007-9115-6

    Article  CAS  PubMed  Google Scholar 

  • Moon CD, Zhang XX, Matthijs S, Schäfer M, Budzikiewicz H, Rainey PB (2008) Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC Microbiol 8:7. doi:10.1186/1471-2180-8-7

    Article  PubMed  Google Scholar 

  • Mossialos D, Ochsner U, Baysse C, Chablain P, Pirnay JP, Koedam N, Budzikiewicz H, Fernández DU, Schäfer M, Ravel J, Cornelis P (2002) Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol 45:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Pirnay JP, Matthijs S, Colak H, Chablain P, Bilocq F, Van Eldere J, De Vos D, Zizi M, Triest L, Cornelis P (2005) Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ Microbiol 7:969–980. doi:10.1111/j.1462-2920.2005.00776.x

    Article  CAS  PubMed  Google Scholar 

  • Poole K, Young L, Neshat S (1990) Enterobactin-mediated iron transport in Pseudomonas aeruginosa. J Bacteriol 172:6991–6996

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Van Der Sluis I, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135

    Article  CAS  Google Scholar 

  • Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799–5808. doi:10.1093/nar/gki885

    Article  CAS  PubMed  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbial 11:195–200

    CAS  Google Scholar 

  • Risse D, Beiderbeck H, Taraz K, Budzikiewicz H, Gustine D (1998) Corrugatin, a lipopeptide siderophore from Pseudomonas corrugata. Z Naturforsch 53c:295–304

    Google Scholar 

  • Salah-el-Din ALM, Kyslic P, Stephan D, Abdallah MA (1997) Bacterial iron transport: structure elucidation by FAB-MS and by 2 D NMR (1H, 13C, 15N) of pyoverdin G4R, a peptidic siderophore produced by a nitrogen-fixing strain of Pseudomonas putida. Tetrahedron Lett 53:12539–12552

    CAS  Google Scholar 

  • Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D, Keel C (2000) Autoinduction of 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225. doi:10.1128/JB.182.5.1215-1225.2000

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. doi:10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  • Singh GM, Fortin PD, Koglin A, Walsh CT (2008) beta-Hydroxylation of the aspartyl residue in the phytotoxin syringomycin E: characterization of two candidate hydroxylases AspH and SyrP in Pseudomonas syringae. Biochemistry 47:11310–11320. doi:10.1021/bi801322z

    Article  CAS  PubMed  Google Scholar 

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505. doi:10.1016/S1074-5521(99)80082-9

    Article  CAS  PubMed  Google Scholar 

  • Teintze M, Hossain MB, Barnes CL, Leong J, van der Helm D (1981) Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochemistry 20:6446–6457. doi:10.1021/bi00525a025

    Article  CAS  PubMed  Google Scholar 

  • Tolmasky ME, Actis LA, Crosa JH (1995) A histidine decarboxylase gene encoded by the Vibrio anguillarum plasmid pJM1 is essential for virulence: histamine is a precursor in the biosynthesis of anguibactin. Mol Microbiol 15:87–95. doi:10.1111/j.1365-2958.1995.tb02223.x

    Article  CAS  PubMed  Google Scholar 

  • Vieira J, Messing J (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194

    Article  CAS  PubMed  Google Scholar 

  • Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Médigue C, Boccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679. doi:10.1038/nbt1212

    Article  CAS  PubMed  Google Scholar 

  • Voisard C, Bull C, Keel C, Laville J, Maurhofer M, Schnider U, Défago G, Haas D (1994) Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. In: O’Gara F, Dowling D, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. VCH, Weinheim, pp 67–89

    Chapter  Google Scholar 

  • Wong-Lun-Sang S, Bernardini JJ, Hennard C, Kyslic P, Dell A, Abdallah MA (1996) Bacterial siderophores: structure elucidation, 2 D 1H and 13C NMR assignments of pyoverdins produced by Pseudomonas fluorescens CHA0. Tetrahedron Lett 37:3329–3332. doi:10.1016/0040-4039(96)00569-2

    Article  CAS  Google Scholar 

  • Yunta F, García-Marco S, Lucena JJ, Gómez-Gallego M, Alcázar R, Sierra MA (2003) Chelating agents related to ethylenediamine bis(2-hydroxyphenyl)acetic acid (EDDHA): synthesis, characterization, and equilibrium studies of the free ligands and their Mg2+, Ca2+, Cu2+, and Fe3+ chelates. Inorg Chem 42:5412–5421. doi:10.1021/ic034333j

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cornelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthijs, S., Laus, G., Meyer, JM. et al. Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals 22, 951–964 (2009). https://doi.org/10.1007/s10534-009-9247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9247-y

Keywords

Navigation