Skip to main content

Advertisement

Log in

The effects of lactoferrin in a rat model of catecholamine cardiotoxicity

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Lactoferrin is recently under intense investigation because of its proposed several pharmacologically positive effects. Based on its iron-binding properties and its physiological presence in the human body, it may have a significant impact on pathological conditions associated with iron-catalysed reactive oxygen species (ROS). Its effect on a catecholamine model of myocardial injury, which shares several pathophysiological features with acute myocardial infarction (AMI) in humans, was examined. Male Wistar rats were randomly divided into four groups according to the received medication: control (saline), isoprenaline (ISO, 100 mg kg−1 s.c.), bovine lactoferrin (La, 50 mg kg−1 i.v.) or a combination of La + ISO in the above-mentioned doses. After 24 h, haemodynamic functional parameters were measured, a sample of blood was withdrawn and the heart was removed for analysis of various parameters. Lactoferrin premedication reduced some impairment caused by ISO (e.g. a stroke volume decrease, an increase in peripheral resistance and calcium overload). These positive effects were likely to have been mediated by the positive inotropic effect of lactoferrin and by inhibition of ROS formation due to chelation of free iron. The failure of lactoferrin to provide higher protection seems to be associated with the complexity of catecholamine cardiotoxicity and with its hydrophilic character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah FB, El Hage Chahine JM (2000) Transferrins: iron release from lactoferrin. J Mol Biol 303:255–266. doi:10.1006/jmbi.2000.4101

    Article  PubMed  CAS  Google Scholar 

  • Baker EN, Baker HM (2005) Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci 62:2531–2539. doi:10.1007/s00018-005-5368-9

    Article  PubMed  CAS  Google Scholar 

  • Baker EN, Anderson BF, Baker HM, Day CL, Haridas M, Norris GE, Rumball SV, Smith CA, Thomas DH (1994) Three-dimensional structure of lactoferrin in various functional states. Adv Exp Med Biol 357:1–12

    PubMed  CAS  Google Scholar 

  • Bennett RM, Kokocinski T (1979) Lactoferrin turnover in man. Clin Sci (Lond) 57:453–460

    CAS  Google Scholar 

  • Berenshtein E, Vaisman B, Goldberg-Langerman C, Kitrossky N, Konijn AM, Chevion M (2002) Roles of ferritin and iron in ischemic preconditioning of the heart. Mol Cell Biochem 234–235:283–292. doi:10.1023/A:1015923202082

    Article  PubMed  Google Scholar 

  • Bolli R, Patel BS, Jeroudi MO, Li XY, Triana JF, Lai EK, McCay PB (1990) Iron-mediated radical reactions upon reperfusion contribute to myocardial “stunning”. Am J Physiol 259:H1901–H1911

    PubMed  CAS  Google Scholar 

  • Britigan BE, Serody JS, Cohen MS (1994) The role of lactoferrin as an anti-inflammatory molecule. Adv Exp Med Biol 357:143–156

    PubMed  CAS  Google Scholar 

  • Brock JH (2002) The physiology of lactoferrin. Biochem Cell Biol 80:1–6. doi:10.1139/o01-212

    Article  PubMed  CAS  Google Scholar 

  • Chagoya de Sanchez V, Hernandez-Munoz R, Lopez-Barrera F, Yanez L, Vidrio S, Suarez J, Cota-Garza MD, Aranda-Fraustro A, Cruz D (1997) Sequential changes of energy metabolism and mitochondrial function in myocardial infarction induced by isoproterenol in rats: a long-term and integrative study. Can J Physiol Pharmacol 75:1300–1311. doi:10.1139/cjpp-75-12-1300

    Article  PubMed  CAS  Google Scholar 

  • Coudray C, Pucheu S, Boucher F, Arnaud J, de Leiris J, Favier A (1994) Effect of ischemia/reperfusion sequence on cytosolic iron status and its release in the coronary effluent in isolated rat hearts. Biol Trace Elem Res 41:69–75. doi:10.1007/BF02917218

    Article  PubMed  CAS  Google Scholar 

  • Erga KS, Peen E, Tenstad O, Reed RK (2000) Lactoferrin and anti-lactoferrin antibodies: effects of ironloading of lactoferrin on albumin extravasation in different tissues in rats. Acta Physiol Scand 170:11–19. doi:10.1046/j.1365-201x.2000.00754.x

    Article  PubMed  CAS  Google Scholar 

  • Fielding RA, Violan MA, Svetkey L, Abad LW, Manfredi TJ, Cosmas A, Bean J (2000) Effects of prior exercise on eccentric exercise-induced neutrophilia and enzyme release. Med Sci Sports Exerc 32:359–364. doi:10.1097/00005768-200002000-00015

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JM, Paterson SK, Segal AW, Halliwell B (1981) Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem J 199:259–261

    PubMed  CAS  Google Scholar 

  • Hasenfuss G (1998) Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39:60–76. doi:10.1016/S0008-6363(98)00110-2

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Sakai M, Kaida Y, Kaibara K (2004) Blood lactoferrin release induced by running exercise in normal volunteers: antibacterial activity. Clin Chim Acta 341:165–172. doi:10.1016/j.cccn.2003.12.001

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski DS, Richardson DR (2007) Future of toxicology-iron chelators and differing modes of action and toxicity: the changing face of iron chelation therapy. Chem Res Toxicol 20:715–720. doi:10.1021/tx700039c

    Article  PubMed  CAS  Google Scholar 

  • Karle H, Hansen NE, Malmquist J, Karle AK, Larsson I (1979) Turnover of human lactoferrin in the rabbit. Scand J Haematol 23:303–312

    PubMed  CAS  Google Scholar 

  • Kontoghiorghes GJ (2006) New chelation therapies and emerging chelating drugs for the treatment of iron overload. Expert Opin Emerg Drugs 11:1–5. doi:10.1517/14728214.11.1.1

    Article  PubMed  CAS  Google Scholar 

  • Kurose I, Yamada T, Wolf R, Granger DN (1994) P-selectin-dependent leukocyte recruitment and intestinal mucosal injury induced by lactoferrin. J Leukoc Biol 55:771–777

    PubMed  CAS  Google Scholar 

  • Lentner C (1990) Geigy scientific tables. Ciba-Geigy, Basel

    Google Scholar 

  • Metz-Boutigue MH, Jolles J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jolles P (1984) Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem 145:659–676. doi:10.1111/j.1432-1033.1984.tb08607.x

    Article  PubMed  CAS  Google Scholar 

  • Neri M, Cerretani D, Fiaschi AI, Laghi PF, Lazzerini PE, Maffione AB, Micheli L, Bruni G, Nencini C, Giorgi G, D’Errico S, Fiore C, Pomara C, Riezzo I, Turillazzi E, Fineschi V (2007) Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats. J Cell Mol Med 11:156–170. doi:10.1111/j.1582-4934.2007.00009.x

    Article  PubMed  CAS  Google Scholar 

  • Oseas R, Yang HH, Baehner RL, Boxer LA (1981) Lactoferrin: a promoter of polymorphonuclear leukocyte adhesiveness. Blood 57:939–945

    PubMed  CAS  Google Scholar 

  • Paffett ML, Walker BR (2007) Vascular adaptations to hypoxia: molecular and cellular mechanisms regulating vascular tone. Essays Biochem 43:105–119. doi:10.1042/BSE0430105

    Article  PubMed  CAS  Google Scholar 

  • Parkkinen J, Sahlstedt L, von Bonsdorff L, Salo H, Ebeling F, Ruutu T (2006) Effect of repeated apotransferrin administrations on serum iron parameters in patients undergoing myeloablative conditioning and allogeneic stem cell transplantation. Br J Haematol 135:228–234. doi:10.1111/j.1365-2141.2006.06273.x

    Article  PubMed  CAS  Google Scholar 

  • Plomteux G, Charlier C, Albert A, Farnier M, Pressac M, Vernet M, Paris M, Dellamonica C, Dezier JF (1987) Reference values of serum transferrin in newborn infants, children and adults. Ann Biol Clin (Paris) 45:622–629

    CAS  Google Scholar 

  • Raghuveer TS, McGuire EM, Martin SM, Wagner BA, Rebouche CJ, Buettner GR, Widness JA (2002) Lactoferrin in the preterm infants’ diet attenuates iron-induced oxidation products. Pediatr Res 52:964–972

    PubMed  CAS  Google Scholar 

  • Reddy BR, Wynne J, Kloner RA, Przyklenk K (1991) Pretreatment with the iron chelator desferrioxamine fails to provide sustained protection against myocardial ischaemia-reperfusion injury. Cardiovasc Res 25:711–718. doi:10.1093/cvr/25.9.711

    Article  PubMed  CAS  Google Scholar 

  • Regoeczi E, Chindemi PA, Debanne MT, Prieels JP (1985) Lactoferrin catabolism in the rat liver. Am J Physiol 248:G8–G14

    PubMed  CAS  Google Scholar 

  • Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306. doi:10.1016/S0022-2828(85)80130-9

    Article  PubMed  CAS  Google Scholar 

  • Santos-Silva A, Rebelo I, Castro E, Belo L, Catarino C, Monteiro I, Almeida MD, Quintanilha A (2002) Erythrocyte damage and leukocyte activation in ischemic stroke. Clin Chim Acta 320:29–35

    PubMed  CAS  Google Scholar 

  • Shimmura S, Shimoyama M, Hojo M, Urayama K, Tsubota K (1998) Reoxygenation injury in a cultured corneal epithelial cell line protected by the uptake of lactoferrin. Invest Ophthalmol Vis Sci 39:1346–1351

    PubMed  CAS  Google Scholar 

  • Spiller P, Webb-Peploe MM (1985) Blood flow. Eur Heart J 6(suppl C):11–18

    PubMed  Google Scholar 

  • Sterba M, Popelova O, Simunek T, Mazurova Y, Potacova A, Adamcova M, Guncova I, Kaiserova H, Palicka V, Ponka P, Gersl V (2007) Iron chelation-afforded cardioprotection against chronic anthracycline cardiotoxicity: a study of salicylaldehyde isonicotinoyl hydrazone (SIH). Toxicology 235:150–166. doi:10.1016/j.tox.2007.03.020

    Article  PubMed  CAS  Google Scholar 

  • van Snick JL, Markowetz B, Masson PL (1977) The ingestion and digestion of human lactoferrin by mouse peritoneal macrophages and the transfer of its iron into ferritin. J Exp Med 146:817–827. doi:10.1084/jem.146.3.817

    Article  PubMed  Google Scholar 

  • Ward PA, Till GO, Kunkel R, Beauchamp C (1983) Evidence for role of hydroxyl radical in complement and neutrophil-dependent tissue injury. J Clin Invest 72:789–801. doi:10.1172/JCI111050

    Article  PubMed  CAS  Google Scholar 

  • Weinberg ED (2003) The therapeutic potential of lactoferrin. Expert Opin Investig Drugs 12:841–851. doi:10.1517/13543784.12.5.841

    Article  PubMed  CAS  Google Scholar 

  • Weinberg ED (2006) Therapeutic potential of iron chelators in diseases associated with iron mismanagement. J Pharm Pharmacol 58:575–584. doi:10.1211/jpp.58.5.0001

    Article  PubMed  CAS  Google Scholar 

  • Wolach B, Coates TD, Hugli TE, Baehner RL, Boxer LA (1984) Plasma lactoferrin reflects granulocyte activation via complement in burn patients. J Lab Clin Med 103:284–293

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank to Mrs. Anezka Kunova for her excellent technical support. This work was supported by grants of Charles University, No. 94/2006/C/FaF and 39207 C and by Research Project, No. MZO 001179906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Přemysl Mladěnka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mladěnka, P., Semecký, V., Bobrovová, Z. et al. The effects of lactoferrin in a rat model of catecholamine cardiotoxicity. Biometals 22, 353–361 (2009). https://doi.org/10.1007/s10534-008-9172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-008-9172-5

Keywords

Navigation