Skip to main content
Log in

Cardioprotective Effect of 2-Ethyl-3-Hydroxy-6-Methylpyridinium 2-Nitroxysuccinate Against Adrenaline/Hydrocortisone-Induced Myocardial Ischemia in Mice: Modulation of Free-Radical Processes in Biomembranes and Monoamine Oxidase A Activity

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Oxidative stress (OS) plays a key role in the development of cardiovascular diseases (CVD) in three major ways: reactive oxygen species (ROS)-induced reduction of nitric oxide (NO) bioavailability, ROS-induced inflammation and ROS-induced mitochondrial dysfunction. Oxidation of lipid molecules under the action of ROS leads to damage to membrane structures, changes the functioning of membrane-bound enzymes, and impairs membrane permeability and stability. An increase in OS results in the occurrence of endothelial dysfunction and drug tolerance, side effects, requiring discontinuation of drugs. All of these are significant problems of cardiotherapy. Therefore, the search for new alternative NO donors continues. The present research was aimed at studying the protective effect of 2-ethyl-3-hydroxy-6-methylpyridinium 2-nitroxysuccinate (NS) on the cardiovascular system on mouse myocardial ischemia (MI) model. The NS hybrid molecule includes a synthetic vitamin B6 analog 2-ethyl-3-hydroxy-6-methylpyridine (an antioxidant) and 2-nitroxysuccinic acid (a source of nitric oxide). Using the electron paramagnetic resonance (EPR) method and biochemical methods, we showed that the pronounced ability of NS to release NO is favorably combines with the capacity to prevent OS due to mechanisms such as suppression of the lipid peroxidation (LPO) process, antiradical activity and inhibition of the mitochondrial membrane-bound monoamine oxidase A (MAO-A). Using histological methods, we established that the administration of NS (10 mg/kg, i.p.) reduces the number of ischemic fibers and protects cardiomyocytes against ischemia injury. Thus, the complex protective effect allows us to consider NS as an alternative NO donor and a candidate for the development of a new pharmaceutical agent for the treatment of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALT:

alanine aminotransferase activity

AST:

serum aspartate aminotransferase

CVD:

cardiovascular diseases

Cys:

cysteine

DETA-NONOate:

2,2’-(Hydroxynitrosohydrazino)bis-ethanamine

EDTA:

ethylenediaminetetraacetic acid

eNOS:

endothelial nitric oxide synthase

EPR:

electron paramagnetic resonance

H&E:

hematoxylin and eosin

Hb:

deoxyhemoglobin

HBFP:

haematoxylin-basic fuchsin-picric acid

i.p:

intraperitoneally

IHD:

ischemic heart disease

LD50:

median lethal dose

LPO:

lipid peroxidation

MAO-A:

monoamine oxidase A

MI:

myocardial ischemia

NO:

nitric oxide

NS:

2-ethyl-3-hydroxy-6-methylpyridinium 2-nitroxysuccinate

OS:

oxidative stress

PBS:

phosphate-buffered saline

s.c:

subcutaneous

TBARS:

TBA-reactive substances

tBuOOH:

tert-Butyl hydroperoxide

TCA:

trichloroacetic acid

References

  1. Khan, M. A., Hashim, M. J., Mustafa, H., Baniyas, M. Y., Al Suwaidi, S. K. B. M., AlKatheeri, R., Alblooshi, F. M. K., Almatrooshi, M. E. A. H., Alzaabi, M. E. H., Al Darmaki, R. S., & Lootah, S. N. A. H. (2020). Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus, 12(7), e9349. https://doi.org/10.7759/cureus.9349.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., Barengo, N. C., Beaton, A. Z., Benjamin, E. J., Benziger, C. P., Bonny, A., Brauer, M., Brodmann, M., Cahill, T. J., Carapetis, J., Catapano, A. L., Chugh, S. S., Cooper, L. T., Coresh, J., Criqui, M., DeCleene, N., Eagle, K. A., Emmons-Bell, S., Feigin, V. L., Fernández-Solà, J., Fowkes, G., Gakidou, E., Grundy, S. M., He, F. J., Howard, G., Hu, F., Inker, L., Karthikeyan, G., Kassebaum, N., Koroshetz, W., Lavie, C., Lloyd-Jones, D., Lu, H. S., Mirijello, A., Temesgen, A. M., Mokdad, A., Moran, A. E., Muntner, P., Narula, J., Neal, B., Ntsekhe, M., Moraes de Oliveira, G., Otto, C., Owolabi, M., Pratt, M., Rajagopalan, S., Reitsma, M., Ribeiro, A. L. P., Rigotti, N., Rodgers, A., Sable, C., Shakil, S., Sliwa-Hahnle, K., Stark, B., Sundström, J., Timpel, P., Tleyjeh, I. M., Valgimigli, M., Vos, T., Whelton, P. K., Yacoub, M., Zuhlke, L., Murray, C., & Fuster, V. (2020). Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College Cardiology, 76, 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.

    Article  Google Scholar 

  3. Moreira-Silva, S., Urbano, J., Nogueira-Silva, L., Bettencourt, P., & Pimenta, J. (2016). Impact of chronic nitrate therapy in patients with ischemic heart failure. Journal of Cardiovascular Pharmacology Therapeutics, 21(5), 466–470. https://doi.org/10.1177/1074248416634464.

    Article  CAS  PubMed  Google Scholar 

  4. Yang, S., & Lian, G. (2020). ROS and diseases: role in metabolism and energy supply. Molecular and Cellular Biochemistry, 467, 1–12. https://doi.org/10.1007/s11010-019-03667-9.

    Article  CAS  PubMed  Google Scholar 

  5. Shaito, A., Aramouni, K., Assaf, R., Parenti, A., Orekhov, A., Yazbi, A. E., Pintus, G., & Eid, A. H. (2022). Oxidative stress-induced endothelial dysfunction in cardiovascular diseases. Frontiers in Bioscience (Landmark Ed), 27(3), 105. https://doi.org/10.31083/j.fbl2703105.

    Article  CAS  Google Scholar 

  6. Rodella, L. F., & Rezzani, R. (2012). Endothelial and vascular smooth cell dysfunctions: A comprehensive appraisal [Internet]. Atherogenesis. InTech. Available from: https://doi.org/10.5772/25479.

  7. Liu, Y., Feng, S., Subedi, K., & Wang, H. (2020). Attenuation of Ischemic Stroke-Caused Brain Injury by a Monoamine Oxidase Inhibitor Involves Improved Proteostasis and Reduced Neuroinflammation. Molecular Neurobiology, 57(2), 937–948. https://doi.org/10.1007/s12035-019-01788-2.

    Article  CAS  PubMed  Google Scholar 

  8. Costiniti, V., Spera, I., Menabò, R., Palmieri, E. M., Menga, A., Scarcia, P., Porcelli, V., Gissi, R., Castegna, A., & Canton, M. (2018). Monoamine oxidase-dependent histamine catabolism accounts for post-ischemic cardiac redox imbalance and injury. Biochimica et Biophysica Acta Molecular Basis of Disease, 1864(9 Pt B), 3050–3059. https://doi.org/10.1016/j.bbadis.2018.06.018.

    Article  CAS  PubMed  Google Scholar 

  9. Santin, Y., Fazal, L., Sainte-Marie, Y., Sicard, P., Maggiorani, D., Tortosa, F., Yücel, Y. Y., Teyssedre, L., Rouquette, J., Marcellin, M., Vindis, C., Shih, J. C., Lairez, O., Burlet-Schiltz, O., Parini, A., Lezoualc’h, F., & Mialet-Perez, J. (2020). Mitochondrial 4-HNE derived from MAO-A promotes mitoCa2+ overload in chronic postischemic cardiac remodeling. Cell Death & Differentiation, 27(6), 1907–1923. https://doi.org/10.1038/s41418-019-0470-y.

    Article  CAS  Google Scholar 

  10. Manzella, N., Santin, Y., Maggiorani, D., Martini, H., Douin-Echinard, V., Passos, J. F., Lezoualc’h, F., Binda, C., Parini, A., & Mialet-Perez, J. (2018). Monoamine oxidase-A is a novel driver of stress-induced premature senescence through inhibition of parkin-mediated mitophagy. Aging Cell, 17(5), e12811. https://doi.org/10.1111/acel.12811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Merce, A. P., Ionică, L. N., Bînă, A. M., Popescu, S., Lighezan, R., Petrescu, L., Borza, C., Sturza, A., Muntean, D. M., & Creţu, O. M. (2023). Monoamine oxidase is a source of cardiac oxidative stress in obese rats: the beneficial role of metformin. Molecular and Cellular Biochemistry, 478(1), 59–67. https://doi.org/10.1007/s11010-022-04490-5.

    Article  CAS  PubMed  Google Scholar 

  12. Neganova, M. E., Klochkov, S. G., Shevtsova, E. F., Bogatyrenko, T. N., & Mishchenko, D. V. (2018). Antioxidant properties of a pharmaceutical substance hypocard, a potential drug for ischemic disease. Bulletin of Experimental Biology Medicine, 166(1), 46–49. https://doi.org/10.1007/s10517-018-4286-4.

    Article  CAS  PubMed  Google Scholar 

  13. Bogatyrenko, T. N., Kuropteva, Z. V., Baider, L. M., Bogatyrenko, V. R., & Mishchenko, D. V. (2020). 2-Ethyl-3-hydroxy-6-methylpyridine nitroxy succinate as a multifunctional hybrid structure. Russian Chemical Bulletin, 69(10), 1999–2003. https://doi.org/10.1007/s11172-020-2991-4.

    Article  CAS  Google Scholar 

  14. Gaman, D. V., Kononenko, N. N., Gubina-Vakulik, G. I., Tyupka, T. I., & Volkovoy, V. A. (2011). Features of the morphogenic ultrastructure of the myocardium in experimental myocardial ischemia. Ukrainian Biopharmaceutical Journal, 5, 16–20

    Google Scholar 

  15. Areshidze, D. A., Mischenko, D. V., Makartseva, L. A., Kucher, S. A., Kozlova, M. A., Timchenko, L. D., Rzhepakovsky, I. V., Nagdalian, A. A., & Pushkin, S. V. (2018). Some functional measures of the organism of rats at modeling of ischemic heart disease in two different ways. Entomology Applied Science Letters, 5(4), 19–29

    Google Scholar 

  16. Fedorov, B. S., Fadeev, M. A., Varfolomeev, V. N., Retskij, M. I., Bliznetsova, G. N., & Neborak, E. V. (2010). Nitroxy-succinate 2-ethyl-6-methyl-3-oxypyridine (versions of use) and method of producing said compound: RU, 2394815[P]. Bull. No. 20

  17. Gadomskij, S. Y., Yakushchenko, I. K., Pozdeeva, N. N., Golosov, E. V., & Mishchenko, D.V. (2019). Method of producing 2-nitroxysuccinate 3-oxy-6-methyl-2-ethylpyridine: RU, 2699070 C1[P]. Bull. No. 25

  18. Balakina, A. A., Prikhodchenko, T. R., Yakushev, I. A., Amozova, V. I., Mumyatova, V. A., Kornev, A. B., Terent’ev, A. A., Gadomsky, S. Y. A., Dorovatovskii, P. V., Fedorov, B. S., & Mishchenko, D. V. (2023). Structure and biological activity of 2-ethyl-3-hydroxy-6-methylpyridinium nitroxysuccinate. Russian Chemical Bulletin, 72, 1618–1631. https://doi.org/10.1007/s11172-023-3942-7.

    Article  CAS  Google Scholar 

  19. Vystorop, I. V., Konovalova, N. P., Nelyubina, Y. V., Varfolomeev, V. N., Fedorov, B. S., Sashenkova, T. E., Berseneva, E. N., Lyssenko, K. A., & Kostyanovsky, R. G. (2010). Cyclic hydroxamic acids derived from α-amino acids 1. Regioselective synthesis, structure, NO-donor and antimetastatic activities of spirobicyclic hydroxamic acids derived from glycine and DL-alanine. Russian Chemical Bulletin, 59, 127–135. https://doi.org/10.1007/s11172-010-0055-x.

    Article  CAS  Google Scholar 

  20. Rein, H., Ristau, O., & Scheler, W. (1972). On the influence of allosteric effectors on the electron paramagnetic spectrum of nitric oxide hemoglobin. FEBS Letters, 24(1), 24–26. https://doi.org/10.1016/0014-5793(72)80817-2.

    Article  CAS  PubMed  Google Scholar 

  21. Mironov, A. N., Bunyatyan, N. D., Vasiliev, A. N., Verstakova, O. L., Zhuravleva, M. V., Lepakhin, V. K., Korobov, N. V., Merkulov, V. A., Orehov, S. N., Sakayeva, I. V., Uteshev, D. B., & Yavorsky, A. N. (2012). Guidelines for Preclinical Trials of Medicinal Products. Part 1. Grif & K, Moscow (In Russian): 15–17.

  22. Lie, J. T., Holley, K. E., Kampa, W. R., & Titus, J. L. (1971). New histochemical method for morphologic diagnosis of early stages of myocardial ischemia. Mayo Clinic Proceedings, 46(5), 319–327.

    CAS  PubMed  Google Scholar 

  23. Broeke, J., Pérez, J. M. M., & Pascau, J. (2015) Image Processing with ImageJ; (p. 346)Packt Publishing: Birmingham, UK

  24. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3.

    Article  CAS  PubMed  Google Scholar 

  25. Faingold, I. I., Poletaeva, D. A., Soldatova, Y. V., Smolina, A. V., Pokidova, O. V., Kulikov, A. V., Sanina, N. A., & Kotelnikova, R. A. (2021). Effects of albumin-bound nitrosyl iron complex with thiosulfate ligands on lipid peroxidation and activities of mitochondrial enzymes in vitro. Nitric Oxide, 117, 46–52. https://doi.org/10.1016/j.niox.2021.10.002.

    Article  CAS  PubMed  Google Scholar 

  26. Vladimirov, Y. A., & Proskurnina, E. V. (2009). Free radicals and cell chemiluminescence.Biochemistry, 74(13), 1545–1566. https://doi.org/10.1134/s0006297909130082.

    Article  CAS  PubMed  Google Scholar 

  27. Kotelnikova, R. A., Smolina, A. V., Grigoryev, V. V., Faingold, I. I., Mischenko, D. V., Rybkin, A. Y. U., Poletayeva, D. A., Vankin, G. I., Zamoyskiy, V. L., Voronov, I. I., Troshin, P. A., Kotelnikov, A. I., & Bachurin, S. O. (2014). Influence of water-soluble derivatives of [60]fullerene on therapeutically important targets related to neurodegenerative diseases. Medchemcomm, 5, 1664–1668. https://doi.org/10.1039/C4MD00194J.

    Article  CAS  Google Scholar 

  28. Veryovkina, I. V., Samed, M. M., & Gorkin, V. Z. (1972). Mitochondrial monoamine oxidase of rat liver: reversible qualitative alterations in catalytic properties. Biochimica Biophysica Acta, 258(1), 56–70. https://doi.org/10.1016/0005-2744(72)90966-7.

    Article  CAS  Google Scholar 

  29. Varadharaj, S., Kelly, O. J., Khayat, R. N., Kumar, P. S., Ahmed, N., & Zweier, J. L. (2017). Role of dietary antioxidants in the preservation of vascular function and the modulation of health and disease. Frontiers in Cardiovascular Medicine, 4, 64. https://doi.org/10.3389/fcvm.2017.00064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, Y., Huang, A., Kaley, G., & Sun, D. (2009). ENOS uncoupling and endothelial dysfunction in aged vessels. American Journal of Physiology-Heart and Circulatory Physiology, 297(5), H1829–H1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prikhodchenko, T. R., Balakina, A. A., Amozova, V. I., Gadomsky, S. Y. A., & Mishchenko, D. V. (2022). Antioxidant properties of 3-hydroxy-2-ethyl-6-methylpyridinium nitroxysuccinate upon the activation of oxidative processes by antitumor drug cisplatin in vitro and in vivo. Russian Chemical Bulletin, 71, 2629–2635.

    Article  CAS  Google Scholar 

  32. Pokidova, O. V., Batova, E. V., Sadkov, A. P., Eremeev, A. B., Fedorov, B. S., & Kotelnikov, A. I. (2019). The reactivity of 3-hydroxy-6-methyl-2-ethylpyridine 2-nitroxysuccinate and reference drugs in model no-generating systems. Doklady Chemistry, 486, 152–155. https://doi.org/10.1134/S0012500819060016.

    Article  CAS  Google Scholar 

  33. Pokidova, O. V., Psikha, B. L., Kormukhina, A. Y. U., Kotel’nikov, A. I., & Fedorov, B. S. (2020). Mechanism of the 2-ethyl-3-hydroxy-6-methylpyridinium 2-nitroxysuccinate reduction in nitrite-generating systems. Mendeleev Communications, 30(4), 482–484. https://doi.org/10.1016/j.mencom.2020.07.025.

    Article  CAS  Google Scholar 

  34. Poletaeva, D. A., Faingold, I. I., Soldatova, Y. V., Smolina, A. V., Fedorov, B. S., Eremeev, A. B., & Kotelnikova, R. A. (2019). Membranotropic and antiradical properties of 2-nitroxysuccinate 3-hydroxy-6-methyl-2-ethylpyridine. Bulletin of Experimental Biology and Medicine, 167(6), 744–746. https://doi.org/10.1007/s10517-019-04613-x.

    Article  CAS  PubMed  Google Scholar 

  35. Huuskonen, C., Hämäläinen, M., Paavonen, T., Moilanen, E., & Mennander, A. (2019). Monoamine oxidase A inhibition protects the myocardium after experimental acute volume overload. The Anatolian Journal Cardiology, 21(1), 39–45. https://doi.org/10.14744/AnatolJCardiol.2018.37336.

    Article  CAS  Google Scholar 

  36. Anderson, R., Lagnado, A., Maggiorani, D., Walaszczyk, A., Dookun, E., Chapman, J., Birch, J., Salmonowicz, H., Ogrodnik, M., Jurk, D., Proctor, C., Correia-Melo, C., Victorelli, S., Fielder, E., Berlinguer-Palmini, R., Owens, A., Greaves, L. C., Kolsky, K. L., Parini, A., Douin-Echinard, V., LeBrasseur, N. K., Arthur, H. M., Tual-Chalot, S., Schafer, M. J., Roos, C. M., Miller, J. D., Robertson, N., Mann, J., Adams, P. D., Tchkonia, T., Kirkland, J. L., Mialet-Perez, J., Richardson, G. D., & Passos, J. F. (2019). Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO Journal, 38(5), e100492

    Article  PubMed  PubMed Central  Google Scholar 

  37. Umbarkar, P., Singh, S., Arkat, S., Bodhankar, S. L., Lohidasan, S., & Sitasawad, S. L. (2015). Monoamine oxidase-A is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy. Free Radical Biology and Medicine, 87, 263–273. https://doi.org/10.1016/j.freeradbiomed.2015.06.025.

    Article  CAS  PubMed  Google Scholar 

  38. Sturza, A., Duicu, O. M., Vaduva, A., Dănilă, M. D., Noveanu, L., Varró, A., & Muntean, D. M. (2015). Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes. Canadian Journal of Physiology Pharmacology, 93(7), 555–561. https://doi.org/10.1139/cjpp-2014-0544.

    Article  CAS  PubMed  Google Scholar 

  39. Muriel, P., & Pérez-Rojas, J. M. (2003). Nitric oxide inhibits mitochondrial monoamine oxidase activity and decreases outer mitochondria membrane fluidity. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 136(3), 191–197. https://doi.org/10.1016/j.cca.2003.08.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Ya. Gadomsky (Researcher, FRC PCP MC RAS) and A. B. Eremeev (engineer, FRC PCP MC RAS) for synthesis and provision of NS.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, the State Task № АААА-А19-119071890015-6, using the equipment of the Medicinal Chemistry Research and Education Center of Moscow region State University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, methodology: R.A.K., I.I.F., D.A.A., T.E.S., U.Y.A., S.V.B.; formal analysis and experimental investigation: I.I.F., D.A.A., A.V.S., Y.V.S., L.A.M., A.A.B., D.A.P., T.R.P., V.N.V.; writing—original draft preparation: A.V.S., D.V.M., D.A.A., D.A.P.; writing—review and editing: I.I.F., A.V.S., R.A.K.; supervision: I.I.F., R.A.K

Corresponding author

Correspondence to Irina I. Faingold.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The work has been carried out in accordance with the European Directive 2010/63/EU and was approved by the Ethical Committee of FRC PCP MC RAS (Approval No 22/3 from 13 December 2022).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faingold, I.I., Smolina, A.V., Soldatova, Y.V. et al. Cardioprotective Effect of 2-Ethyl-3-Hydroxy-6-Methylpyridinium 2-Nitroxysuccinate Against Adrenaline/Hydrocortisone-Induced Myocardial Ischemia in Mice: Modulation of Free-Radical Processes in Biomembranes and Monoamine Oxidase A Activity. Cell Biochem Biophys 82, 235–245 (2024). https://doi.org/10.1007/s12013-023-01203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01203-7

Keywords

Navigation