Skip to main content
Log in

Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence

  • Original Paper
  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The influence of cadmium, zinc and lead on fungal emulsifier synthesis and on the growth of filamentous fungus Curvularia lunata has been studied. Tolerance to heavy metals established for C. lunata was additionally compared with the sensitivity exhibited by strains of Curvularia tuberculata and Paecilomyces marquandii—fungi which do not secrete compounds of emulsifying activity. Although C. lunata, as the only one out of all studied fungi, exhibited the lowest tolerance to heavy metals when grown on a solid medium (in conditions preventing emulsifier synthesis), it manifested the highest tolerance in liquid culture - in conditions allowing exopolymer production. Cadmium, zinc and lead presented in liquid medium up to a concentration of 15 mM had no negative effect on C. lunata growth and stimulated emulsifier synthesis. In the presence of 15 mM of heavy metals, both the emulsifier and 24-h-old growing mycelium exhibited maximum sorption capacities, which were determined as 18.2 ± 2.67, 156.1 ± 10.32 mg g−1 for Cd2+, 22.2 ± 3.40, 95.2 ± 14.21 mg g−1 for Zn2+ and 51.1 ± 1.85, 230.0 ± 28.47 mg g−1 for Pb2+ respectively. The results obtained by us in this work indicate that the emulsifier acts as a protective compound increasing the ability of C. lunata to survive in heavy metal polluted environment. Enhancement of exopolymer synthesis in the presence of Cd2+, Zn2+ and Pb2+ may also suggest, at least to some extent, a metal-specific nature of emulsifier production in C. lunata. Due to accumulation capability and tolerance to heavy metals, C. lunata mycelium surrounded by the emulsifier could be applied for toxic metal removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angyal SJ (1989) Complexes of metal cations with carbohydrates in solution. Ad Carbohydr Chem Biochem 47:1–43

    Article  CAS  Google Scholar 

  • Breierová E, Gregor T, Juršíková N, Stratilová E, Fišera M (2004) The role of pullulan and pectin in the uptake of Cd+2 and Ni+2 ions by Aureobasidium pullulans. Ann Microbiol 54:247–255

    Google Scholar 

  • Collins DO, Reese PB (2001) Biotransformation of cedrol by Curvularia lunata ATTCC 12017. Phytochemistry 56:417–421

    Article  PubMed  CAS  Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JM (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32:688–705

    Article  CAS  Google Scholar 

  • Fogarty RV, Tobin JM (1996) Fungal melanins and their interactions with metals. Enzyme Microb Technol 19:311–317

    Article  PubMed  CAS  Google Scholar 

  • Freire–Nordi CS, Vieira AAH, Nascimento OR (2005) The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochem 40:2215–2224

    Article  CAS  Google Scholar 

  • Gadd GM (2001) Metal transformation. In: Gadd G (eds) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 359–382

    Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gharieb MM (2001) Pattern of cadmium accumulation adn essential cations during growth of cadmium-tolerant fungi. BioMetals 14:143–151

    Article  PubMed  CAS  Google Scholar 

  • Gutnick DL, Bach H (2000) Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl Microbiol Biotechnol 54:451–460

    Article  PubMed  CAS  Google Scholar 

  • Hatvani N, Mécs I (2003) Effects of certain heavy metals on the growth, dye decolorization, and enzyme activity of Lentinula edodes. Ecotoxicol Environ Saf 55:199–203

    Article  PubMed  CAS  Google Scholar 

  • Iyer A, Mody K, Iha B (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull 49:974–977

    Article  PubMed  CAS  Google Scholar 

  • Jaeckel P, Krauss GJ, Krauss G (2005) Cadmium and zinc response of the fungi Heliscus lugdunensis and Verticillium cf alboatrum isolated from highly polluted water. Sci Tot Environ 346:274–279

    Article  CAS  Google Scholar 

  • Jarosz-Wilkołazka A, Grąż M, Braha B, Menge S, Schlosser D, Krauss GJ (2006) Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. BioMetals 19:39–49

    Article  PubMed  CAS  Google Scholar 

  • Kanwal A, Paraszkiewicz K, Długoński J (2001) Transformation of Curvularia lunata IM 2901 with pAN7-1 influences selected physiological properties of the fungus. Microbios 104:27–38

    PubMed  CAS  Google Scholar 

  • Kingsley MT, Bohlool BB (1992) Extracellular polysaccharide is not responsible for aluminium tolerance of Rhizobium leguminosarum bv. Phaseoli CIAT899. Appl Environ Microbiol 58:1095–1101

    PubMed  CAS  Google Scholar 

  • Kong JY, Lee HW, Hong JW, Kang YS, Kim JD, Chang MW, Bae SK (1998) Utilization of a cell-bound polysaccharide produced by marine bacterium Zoogloea sp. New biomaterial for metal adsorption and enzyme immobilization. J Mar Biotechnol 6:99–103

    CAS  Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms – processes and importance for soil systems. Earth-Sci Rev 51:1–31

    Article  CAS  Google Scholar 

  • Loaëc M, Olier R, Guezennec J (1997) Uptake of lead cadmium and zinc by a novel bacterial exopolysaccharide. Water Res 31:1171–1179

    Article  Google Scholar 

  • López Errasquin E, Vázquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  PubMed  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Paraszkiewicz K, Długoński J (1998) Cortexolone 11β-hydroxylation in protoplasts of Curvularia lunata. J Biotechnol 65:217–224

    Article  CAS  Google Scholar 

  • Paraszkiewicz K, Kanwal A, Długoński J (2002) Emulsifier production by steroid transforming filamentous fungus Curvularia lunata Growth and product characterization. J Biotechnol 92:287–294

    Article  PubMed  CAS  Google Scholar 

  • Park JK, Jin YB, Chen JH (1999) Reusable biosorbents in capsules from Zooglea ramigera cells for cadmium removal. Biotechnol Bioeng 63:116–121

    Article  PubMed  CAS  Google Scholar 

  • Richau JA, Choquenet D, Fialho AM, Moreira LM, Sá-Correia I (1997) The biosynthesis of the exopolysaccharide gellan results in the decrease of Sphingomonas paucimobilis tolerance to copper. Enzyme Microb Technol 20:510–515

    Article  CAS  Google Scholar 

  • Rinaldi MG, Phillips P, Schwartz JG, Winn RE, Holt GR, Shagets FW,Elrod J, Nishioka G, Aufdemorte TB (1987) Human Curvularia infections Report of five cases and review of the literature. Diag Microbiol Infect Dis 6:27–39

    Article  CAS  Google Scholar 

  • Safdar A (2003) Curvularia – favorable response to oral itraconazole therapy in two patients with locally invasive phaeohyphomycosis. Clin Microbiol Infect 9:1219–1223

    Article  PubMed  CAS  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueus solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Asthana RK, Kayastha AM, Pandey S, Chaudhary AK, Singh SP(1999) Thiol and exopolysaccharide production in a cyanobacterium under heavy metal stress. Process Biochem 35:63–68

    Article  CAS  Google Scholar 

  • Słaba M, Bizukojć M, Pałecz B, Długoński J (2005) Kinetic study of the toxicity of zinc and lead ions to the heavy metals accumulating fungus Paecilomyces marquandii. Bioprocess Biosyst Eng 28:185–197

    Article  PubMed  CAS  Google Scholar 

  • Słaba M, Długoński J (2004) Zinc and lead uptake by mycelium and regenerating protoplasts of Verticillium marquandii. World J Microbiol Biotechnol 20:323–328

    Article  Google Scholar 

  • Soares EV, Duarte APRS, Boeventura RA, Soares HMVM (2002) Viability and release of complexing compounds during accumulation of heavy metals by brewer’s yeast. Appl Microbiol Biotechnol 58:836–841

    Article  PubMed  CAS  Google Scholar 

  • Taboski MAS, Rand TG, Piórko A (2005) Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. FEMS Microbiol Ecol 53:445–453

    Article  PubMed  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–248

    Article  PubMed  CAS  Google Scholar 

  • Wainwright M, Gadd GM (1997) Fungi and Industrial Pollution. In: Wicklow DT, Söderström BE (eds) The Mycota, IV, Environmental and microbial relationships. Springer–Verlag, Berlin Heidelberg, pp 85–97

  • Wilmańska D, Milczarek K, Rumijowska A, Bartnicka K, Sedlaczek L (1992) Elimination of by-products in 11β-hydroxylation of Substance S using Curvularia lunata clones regenerated from NTG-treated protoplasts. Appl Microbiol Biotechnol 37:626–630

    PubMed  Google Scholar 

  • Zhang D, Duine JA, Kawai F (2002) The extremely high Al Resistance of Penicillium janthineleum F-13 is not caused by internal or external sequestration of Al. BioMetals 15:167–174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the University of Lodz, grant (No. 505/390)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Długoński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paraszkiewicz, K., Frycie, A., Słaba, M. et al. Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence. Biometals 20, 797–805 (2007). https://doi.org/10.1007/s10534-006-9043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9043-x

Keywords

Navigation