Skip to main content

Advertisement

Log in

Diurnal variations in sulfur transformations at the chemocline of a stratified freshwater lake

  • Published:
Biogeochemistry Aims and scope Submit manuscript

A Correction to this article was published on 28 October 2019

This article has been updated

Abstract

In order to characterize biogeochemical sulfur cycling in the metalimnion of a thermally stratified freshwater lake, we followed changes in the concentrations and isotopic composition of sulfur species during a 24-h period, during which the chemocline oscillated at an amplitude of 5.3 m due to internal wave activity. Hourly sampling at a fixed depth (17.1 m) enabled study of redox changes during the transition from oxic to sulfidic conditions and vice versa. The oxidation–reduction potential, pH, conductivity and turbidity correlated linearly with the water temperature (a proxy for depth relative to the chemocline). The highest concentrations of thiosulfate and sulfite were detected approximately 2.5 m below the chemocline. Concentrations of zero-valent sulfur increased ~ 10 fold when the chemocline rose into the photic zone due to phototrophic sulfide oxidation. Triple isotopic composition of sulfur species indicates a shift with depth from values typical for sulfate reduction right below the chemocline to values which may be explained by either sulfate reduction alone or by a combination of microbial sulfate reduction and microbial sulfate disproportionation. We conclude that consumption of hydrogen sulfide at the chemocline of Lake Kinneret is controlled by the combination of its chemical and/or chemotrophic oxidation to sulfur oxoanions and predominantly phototrophic oxidation to zero-valent sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 28 October 2019

    In the initial online version of the article, the sampling station location “F” was missing in Fig. 1. The original article has been corrected.

References

  • Aizenshtat Z, Stoler A, Cohen Y, Nielsen H (1981) The geochemical sulphur enrichment of recent organic matter by polysulfides in the Solar-Lake. In: Bjoroy M (ed) Advances in organic Geochemistry. Wiley, New York, pp 279–288

    Google Scholar 

  • Amrani A (2014) Organosulfur compounds: molecular and isotopic evolution from biota to oil and gas. Ann Rev Earth Planet Sci 42:733–768

    Google Scholar 

  • Antenucci JP, Imberger J, Saggio A (2000) Seasonal evolution of the basin-scale internal wave field in a large stratified lake. Limnol Oceanogr 45:1621–1638

    Google Scholar 

  • APHA (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington DC

    Google Scholar 

  • Arnold GL, Brunner B, Müller LA, Røy H (2014) Modern applications for a total sulfur reduction distillation method - what’s old is new again. Geochem Trans 15(4):1–12

    Google Scholar 

  • Baker AL, Baker KK, Tyler PA (1985) A family of pneumatically-operated thin layer samplers for replicate sampling of heterogeneous water columns. Hydrobiologia 122:207–211

    Google Scholar 

  • Berg JS, Michellod D, Pjevac P, Martinez-Perez C, Buckner CRT, Hach PF, Schubert CJ, Milucka J, Kuypers MMM (2016) Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environ Microbiol 18:5288–5302

    Google Scholar 

  • Bergstein T, Henis Y, Cavari BZ (1979) Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Can J Microbiol 25:999–1007

    Google Scholar 

  • Boegman L, Imberger J, Ivey GN, Antenucci JP (2003) High-frequency internal waves in large stratified lakes. Limnol Oceanogr 48:895–919

    Google Scholar 

  • Bosshard PP, Stettler R, Bachofen R (2000) Seasonal and spatial community dynamics in the meromictic Lake Cadagno. Arch Microbiol 174:168–174

    Google Scholar 

  • Bura-Nakić E, Helz GR, Ciglenečki I, Ćosović B (2009a) Reduced sulfur species in a stratified seawater lake (Rogoznica Lake, Croatia); seasonal variations and argument for organic carriers of reactive sulfur. Geochim Cosmochim Acta 73:3738–3751

    Google Scholar 

  • Bura-Nakić E, Viollier E, Jezequel D, Thiam A, Ciglenecki I (2009b) Reduced sulfur and iron species in anoxic water column of meromictic crater Lake Pavin (Massif Central, France). Chem Geol 266:320–326

    Google Scholar 

  • Burdige DJ, Nealson KH (1986) Chemical and microbiological studies of sulfide-mediated manganese reduction. Geomicrobiol J 4:361–387

    Google Scholar 

  • Butow B, Bergstein-Ben D (1992) Occurrence of Rhodopseudomonas palustris and Chlorobium phaeobacteroides blooms in Lake Kinneret. Hydrobiologia 232:193–200

    Google Scholar 

  • Canfield DE, Thamdrup B (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266:1973–1975

    Google Scholar 

  • Canfield DE, Farquhar J, Zerkle AL (2010) High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38:415–418

    Google Scholar 

  • Casamayor EO (2010) Vertical distribution of planktonic autotrophic thiobacilli and dark CO2 fixation rates in lakes with oxygen-sulfide interfaces. Aquat Microb Ecol 59:217–228

    Google Scholar 

  • Cavari BZ (1977) Denitrification in Lake Kinneret in the presence of oxygen. Freshwater Biol 7:385–391

    Google Scholar 

  • Chen CT, Millero FJ (1986) Precise thermodynamic properties for natural waters covering only the limnological range. Limnol Oceanogr 31:657–662

    Google Scholar 

  • Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by O2. Environ Sci Technol 6:529–537

    Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Google Scholar 

  • Crowe SA, Jones C, Katsev S, Magen C, O’Neill AH, Sturm A, Canfield DE, Haffner GD, Mucci A, Sundby B, Fowle DA (2008a) Photoferrotrophs thrive in an Archean Ocean analogue. Proc Natl Acad Sci USA 105:15938–15943

    Google Scholar 

  • Crowe SA, O’Neill AH, Katsev S, Hehanussa P, Haffner GD, Sundby B, Mucci A, Fowle DA (2008b) The biogeochemistry of tropical lakes: a case study from Lake Matano, Indonesia. Limnol Oceanogr 53:319–331

    Google Scholar 

  • Crowe SA, Paris G, Katsev S, Jones C, Kim S-T, Zerkle A, Nomosatryo S, Fowle DA, Adkins JF, Sessions AL, Farquhar J, Canfield D (2014) Sulfate was a trace constituent of Archean seawater. Science 346:735–739

    Google Scholar 

  • Danza F, Storelli N, Roman S, Ludin S, Tonolla M (2017) Dynamic cellular complexity of anoxygenic phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno. PLoS ONE 12(12):e0189510

    Google Scholar 

  • Ding T, Valkiers S, Kipphardt H, De Bievre P, Taylor PDP, Gonfiantini R, Krouse R (2001) Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and VCDT with a reassessment of the atomic weight of sulfur. Geochim Cosmochim Acta 65(15):2433–2437

    Google Scholar 

  • Eckert W, Frevert T, Bergstein-Ben Dan T, Cavari BZ (1986) Competitive development of Thiocapsa roseopersicina and Chlorobium phaeobacteroides in Lake Kinneret. Can J Microbiol 32:917–921

    Google Scholar 

  • Eckert W, Yacobi Y, Trüper HG (1990) A bloom of a brown phototrophic sulfur bacterium in Lake Kinneret: hydrochemical aspects. Microb Ecol 20:273–282

    Google Scholar 

  • Eckert W, Imberger J, Saggio A (2002) Biogeochemical evolution in response to physical forcing in the water column of a warm monomictic lake. Biogeochemistry 61:291–307

    Google Scholar 

  • Egli K, Wiggli M, Fritz M, Klug J, Gerss J, Bachofen R (2004) Spatial and temporal dynamics of a plume of phototrophic microorganisms in a meromictic alpine lake using turbidity as a measure of cell density. Aquat Microb Ecology 35:105–113

    Google Scholar 

  • Fahey RC, Newton GL (1987) Determination of low-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol 143:85–96

    Google Scholar 

  • Filonov AE (2000) Thermic structure and intense internal waves on the narrow continental shelf of the Black Sea. J Marine Syst 24:27–40

    Google Scholar 

  • Findlay AJ, Kamyshny A (2017) Turnover rates of intermediate sulfur species (S 2−x , S0, S2O3 2−, S4O6 2−) in anoxic freshwater and sediments. Front Microbiol 8:2551

    Google Scholar 

  • Findlay AJ, Gartman A, MacDonald DJ, Hanson TE, Shaw TJ, Luther GW III (2014) Distribution and size fractionation of elemental sulfur in aqueous environments: the Chesapeake Bay and Mid-Atlantic Ridge. Geochim Cosmochim Acta 142:334–348

    Google Scholar 

  • Findlay AJ, Bennett AJ, Hanson TE, Luther GW III (2015) Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria. Appl Environ Microbiol 81:7560–7569

    Google Scholar 

  • Findlay AJ, Di Toro DM, Luther GW III (2017) A model of phototrophic sulfide oxidation in a stratified estuary. Limnol Oceanogr 62:1853–1867

    Google Scholar 

  • Findlay AJ, Boyko V, Pellerin A, Avetisyan K, Guo Q, Yang X, Kamyshny A (2019) Sulphide oxidation affects the preservation of sulphur isotope signals. Geology 47:739–743

    Google Scholar 

  • Franzmann PD, Heitz A, Zappia LR, Wajon JE, Xanthis K (2001) The formation of malodorous dimethyloligosulfides in treated groundwater: the role of biofilms and potential precursors. Water Res 35:1730–1738

    Google Scholar 

  • Friedrich J, Janssen F, Aleynik D, Bange HW, Boltacheva N, Çagatay MN, Dale MN, Etiope G, Erdem Z, Geraga M, Gilli A, Gomoiu MT, Hall POJ, Hanson D, He Y, Holtappels M, Kif MK, Kononets M, Konovalov S, Lichtschlag A, Livingstone DM, Marinaro G, Mazlumyan S, Naeher S, North RP, Papatheodorou G, Pfannkuche O, Prien R, Rehder G, Schubert CJ, Soltwedel T, Sommer S, Stahl H, Stanev EV, Teaca A, Tengberg A, Waldmann C, Wehrli B, Wenzhöfer F (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11:1215–1259

    Google Scholar 

  • Garrity GM, Holt JG (2001) Bergey’s Manual of Systematic Bacteriology, The Archaea and the Deeply Branching and Phototrophic Bacteria, Vol. 1, 2nd edn. Springer Science, New York, pp 601–623

    Google Scholar 

  • Gomes ML, Hurtgen MT (2013) Sulfur isotope systematics of a euxinic, low-sulfate lake: evaluating the importance of the reservoir effect in modern and ancient oceans. Geology 41:663–666

    Google Scholar 

  • Gomes ML, Hurtgen MT (2015) Sulfur isotope fractionation in modern euxinic systems: implications for paleoenvironmental reconstructions of paired sulfate–sulfide isotope records. Geochim Cosmochim Acta 157:39–55

    Google Scholar 

  • Gómez-Giraldo A, Imberger J, Antenucci JP, Yeates PS (2008) Wind-shear–generated high-frequency internal waves as precursors to mixing in a stratified lake. Limnol Oceanogr 53(1):354–367

    Google Scholar 

  • Gregersen LH, Bryant DA, Frigaard NU (2011) Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol 2:116

    Google Scholar 

  • Gun J, Goifman A, Shkrob I, Kamyshny A, Ginzburg B, Hadas O, Dor I, Modestov AD, Lev O (2000) Formation of polysulfides in an oxygen rich freshwater lake and their role in the production of volatile sulfur compounds in aquatic systems. Environ Sci Technol 34:4741–4746

    Google Scholar 

  • Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean Ocean. J Sci 298:2372–2374

    Google Scholar 

  • Hadas O, Pinkas R (1995) Sulfate reduction processes in sediments at different sites in Lake Kinneret, Israel. Microb Ecol 30:55–66

    Google Scholar 

  • Hadas O, Pinkas R, Erez J (2001) High chemoautotrophic primary production in Lake Kinneret, Israel: a neglected link in the carbon cycle in the lake. Limnol Oceanogr 46:1968–1976

    Google Scholar 

  • Hambright KD, Gophen M, Serruya S (1994) Influence of long-term climatic changes on the stratification of a subtropical, warm monomictic lake. Limnol Oceanogr 39:1233–1242

    Google Scholar 

  • Hanson TE, Luther GW III, Findlay AJ, MacDonald DJ, Hess D (2013) Phototrophic sulfide oxidation: environmental insights and methods for kinetic analysis. Front Microbiol 4:1–8

    Google Scholar 

  • Hayes MK, Taylor GT, Astor Y, Scranton MI (2006) Vertical distribution of thiosulfate and sulfite in the Cariaco Basin. Limnol Oceanogr 51:280–287

    Google Scholar 

  • Hodges BR, Imberger J, Saggio A, Winters KB (2000) Modeling basin-scale internal waves in a stratified lake. Limnol Oceanogr 45:1603–1620

    Google Scholar 

  • Hoefs J (2015) Stable isotope geochemistry, 7th edn. Springer International Publishing, Switzerland

    Google Scholar 

  • Holkenbrink C, Barbas SO, Mellerup A, Otaki H, Frigaard NU (2011) Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system. Microbiol-SGM. 157:1229–1239

    Google Scholar 

  • Holmkvist L, Kamyshny A, Vogt C, Vamvakopoulos K, Ferdelman TG, Jørgensen BB (2011) Sulfate reduction below the sulfate-methane transition in Black Sea sediments. Deep-Sea Res 58:493–504

    Google Scholar 

  • Hongve D (1997) Cycling of iron, manganese, and phosphate in a meromictic lake. Limnol Oceanogr 42(4):635–647

    Google Scholar 

  • Jamieson JW, Wing BA, Farquhar J, Hannington MD (2012) Neoarchean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nat Geosci 6:61–64

    Google Scholar 

  • Jessen G, Lichtschlag A, Struck U, Boetius A (2016) Distribution and composition of thiotrophic mats in hypoxic zone of the Black Sea (150–170 m water depth, Crimea margin). Front Microbiol 7:1011

    Google Scholar 

  • Johnston DT, Farquhar J, Wing BA, Kaufman AJ, Canfield DE, Habicht KS (2005) Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. Am J Sci 305:645–660

    Google Scholar 

  • Johnston DT, Poulton SW, Fralick PW, Wing BA, Canfield DE, Farquhar J (2006) Evolution of the oceanic sulfur cycle at the end of the Paleoproterozoic. Geochim Cosmochim Ac 70:5723–5739

    Google Scholar 

  • Johnston DT, Farquhar J, Canfield DE (2007) Sulfur isotope insights into microbial sulfate reduction: when microbes meet models. Geochim Cosmochim Ac 71:3929–3947

    Google Scholar 

  • Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154

    Google Scholar 

  • Jørgensen BB, Kuenen JG, Cohen Y (1979) Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol Oceanogr 24:799–822

    Google Scholar 

  • Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the proterozoic biosphere. Nature 431:834–838

    Google Scholar 

  • Kamyshny A Jr (2009) Solubility of cyclooctasulfur in pure water and sea water at different temperatures. Geochim Cosmochim Acta 73:6022–6028

    Google Scholar 

  • Kamyshny A Jr, Gun J, Rizkov D, Voitsekovski T, Lev O (2007) Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single phase derivatization. Environ Sci Technol 41:6633–6644

    Google Scholar 

  • Kamyshny A Jr, Borkenstein CG, Ferdelman TG (2009) Protocol for quantitative detection of elemental sulfur and polysulfide zero-valent sulfur distribution in natural aquatic samples. Geostand Geoanal Res 33:415–435

    Google Scholar 

  • Kamyshny A Jr, Zerkle AL, Mansaray ZF, Ciglenecki I, Bura-Nakic E, Farquhar J, Ferdelman TG (2011) Biogeochemical sulfur cycling in the water column of a shallow stratified sea-water lake: speciation and quadruple sulfur isotope composition. Mar Chem 127:144–154

    Google Scholar 

  • Kamyshny A Jr, Yakushev EV, Jost G, Podymov OI (2013) Role of sulfide oxidation intermediates in the redox balance of the oxic–anoxic interface of the Gotland Deep, Baltic Sea. Springer-Verlag, Berlin, pp 95–120

    Google Scholar 

  • Kamyshny A Jr, Druschel G, Mansaray ZF, Farquhar J (2014) Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs. Geochem Trans 15:7

    Google Scholar 

  • Knossow N, Blonder B, Eckert W, Turchyn AV, Antler G, Kamyshny A Jr (2015) Annual sulfur cycle in a warm monomictic lake with sub-millimolar sulfate concentrations. Geochem Trans 16:7

    Google Scholar 

  • Kosower NS, Kosower EM, Newton GL, Ranney HM (1979) Bimane fluorescent labels: labeling of normal human red cells under physiological conditions. Proc Natl Acad Sci 76:3382–3386

    Google Scholar 

  • Kostka JE, Luther GW III, Nealson KH (1995) Chemical and biological reduction of Mn(III) pyrophosphate complexes: potential importance of dissolved Mn(III) as an environmental oxidant. Geochim Cosmochim Acta 59:885–894

    Google Scholar 

  • Leavitt WD, Halevy I, Bradley AS, Johnston DT (2013) Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proc Natl Acad Sci USA 110:11244–11249

    Google Scholar 

  • Lichtschlag A, Kamyshny A Jr, Ferdelman TG, deBeer D (2013) Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea). Geochim Cosmochim Acta 105:130–145

    Google Scholar 

  • Lichtschlag A, Donis D, Janssen F, Jessen GL, Holtappels M, Wenzhöfer F, Mazlumyan S, Sergeeva N, Waldmann C, Boetius A (2015) Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean shelf). Biogeosciences 12:5075–5092

    Google Scholar 

  • Luther GW III, Rickard DT (2005) Metal sulfide cluster complexes and their biogeochemical importance in the environment. J Nanopart Res 7:389–407

    Google Scholar 

  • Luther GW III, Church TM, Powell D (1991) Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep-Sea Res 38:1121–1137

    Google Scholar 

  • Manske AK, Glaeser J, Kuypers MMM, Overmann J (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Appl Environ Microbiol 71:8049–8060

    Google Scholar 

  • Millero FJ (1991a) The oxidation of H2S in Framvaren Fjord. Limnol Oceanogr 36:1007–1014

    Google Scholar 

  • Millero FJ (1991b) The oxidation of H2S in the Chesapeake Bay. Estuar Coast Shelf Sci 33:521–527

    Google Scholar 

  • Mityagina MI, Lavrova OY, Karimova SS (2010) Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the north-eastern Black Sea. Int J Remote Sens 31:4779–4790

    Google Scholar 

  • Nakagawa M, Ueno Y, Hattori S, Umemura M, Yagi A, Takai K, Koba K, Sasaki Y, Makabe A, Yoshida N (2012) Seasonal change in microbial sulfur cycling in monomictic Lake Fukami-ike, Japan. Limnol Oceanogr 57:974–988

    Google Scholar 

  • Oduro H, Kamyshny A Jr, Zerkle AL, Li Y, Farquhar J (2013) Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake. Geochim Cosmochim Acta 120:251–262

    Google Scholar 

  • Ostrovsky I, Sukenik A (2008) Spatial heterogeneity of biogeochemical parameters in a subtropical lake. Monit Model Lakes Coast Environ. https://doi.org/10.1007/978-1-4020-6646-7_6

    Article  Google Scholar 

  • Ostrovsky I, Yacobi YZ, Walline P, Kalikhman I (1996) Seiche-induced mixing: its impact on lake productivity. Limnol Oceanogr 41:323–332

    Google Scholar 

  • Overmann J, Beatty JT, Hall KJ, Pfennig N, Northcote TG (1991) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36:846–859

    Google Scholar 

  • Overmann J, Beatty JT, Krouse HR, Hall KJ (1996) The sulfur cycle in the chemocline of a meromictic salt lake. Limnol Oceanogr 41:147–156

    Google Scholar 

  • Pellerin A, Bui TH, Rough M, Mucci A, Canfield DE, Wing BA (2015) Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling: a case study for Mangrove Lake, Bermuda. Geochim Cosmochim Acta 149:152–164

    Google Scholar 

  • Percy D, Li X, Taylor GT, Astor Y, Scranton M (2008) Controls of iron, manganese and intermediate oxidation state sulfur compounds in the Cariaco Basin. Mar Chem 111:47–62

    Google Scholar 

  • Pfennig N (1968) Chlorobium phaeobacteriodes nov. spec. und C. phaeovibrioides nov. spec., zwei neue Arten der grünen Schwefelbakterien. Archiv für Microbiol 63:224–226

    Google Scholar 

  • Prange A, Arzberger I, Engemann C, Modrow H, Scumann O, Truper HG, Stuedel R, Dahl C, Hormes J (1999) In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy. BBA-Gen Subj 1428:446–454

    Google Scholar 

  • Pyzik AJ, Sommer SE (1981) Sedimentary iron monosulfides: kinetics and mechanism of formation. Geochim Cosmochim Acta 45:687–698

    Google Scholar 

  • Rickard DT (1975) Kinetics and mechanism of pyrite formation at low temperatures. Am J Sci 275:636–652

    Google Scholar 

  • Rimmer A, Ostrovsky I, Yacobi YZ (2008) Light availability for Chlorobium phaeobacteroides development in Lake Kinneret. J Plankton Res 30:765–776

    Google Scholar 

  • Rimmer A, Gal G, Opher T, Lechinsky Y, Yacobi YZ (2011) Mechanisms of long-term variations of the thermal structure in a warm lake. Limnol Oceanogr 56:974–988

    Google Scholar 

  • Rinke K, Hubner I, Petzoldt T, Rolinski S, Konig-Rinke M, Post J, Lorke A, Benndorf J (2007) How internal waves influence the vertical distribution of zooplankton. Freshwater Biol 52:137–144

    Google Scholar 

  • Rong L, Lim LW, Takeuchi T (2005) Determination of iodide and thiocyanate in seawater by liquid chromatography with poly(ethylene glycol) stationary phase. Chromatographia 61:371–374

    Google Scholar 

  • Rozas C, de la Fuente A, Ulloa H, Davies P, Niño Y (2014) Quantifying the effect of wind on internal wave resonance in Lake Villarrica, Chile. Environ Fluid Mech 14:849–871

    Google Scholar 

  • Schallenberg M, James M, Hawes I, Howard-Williams C (1999) External forcing by wind and turbid inflows on a deep glacial lake and implications for primary production. New Zeal J Mar Fresh 33:311–331

    Google Scholar 

  • Schettler G, Mingram J, Negendank JFW, Liu J (2006) Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (Northeast China, Jilin Province). Part 2: a 200-year record of atmpspheric lead-210 flux variations and its palaeoclimatic implications. J Paleolimnol 35:271–288

    Google Scholar 

  • Shaw J, Stastna M (2017) A model for shear response in swimming plankton. Progr Oceanogr 151:1–12

    Google Scholar 

  • Sim MS, Bosak T, Ono S (2011a) Large sulfur isotope fractionation does not require disproportionation. Science 333:74–77

    Google Scholar 

  • Sim MS, Ono S, Donovan K, Templer SP, Bosak T (2011b) Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. Geochim Cosmochim Acta 75:4244–4259

    Google Scholar 

  • Sivan O, Erel Y, Mandler D, Nishri A (1998) The dynamic redox of iron in the epilimnion of Lake Kinneret (Sea of Galilee). Geochim Cosmochim Acta 62:565–576

    Google Scholar 

  • Talipova TG, Pelinovsky EN, Kouts T (1998) Kinematic characteristics of internal wave field in the Gotland deep of the Baltic Sea. Okeanologiya 38:37–46

    Google Scholar 

  • Trouwborst RE, Clement BG, Tebo BM, Glazer BT, Luther GW III (2006) Soluble Mn(III) in suboxic zones. J Sci 313:1955–1957

    Google Scholar 

  • Van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publisher, The Netherlands, pp 49–85

    Google Scholar 

  • Veldhuis MJW, van Gemerden H (1986) Competition between purple and brown phototrophic bacteria in stratified lakes” sulfide, acetate, and light as limiting factors. FEMS Microbiol Ecol 38:31–38

    Google Scholar 

  • Vidal J, Rueda FJ, Casamitjana X (2007) The seasonal evolution of high vertical-mode internal waves in a deep reservoir. Limnol Oceanogr 52:2656–2667

    Google Scholar 

  • Winogradsky S (1887) Ueber schwefelbacterien. Bot Zeit 45:489–610

    Google Scholar 

  • Wu FC, Wan GJ, Huang RG, Pu Y, Cai YR (2001) Geochemical processes of iron and manganese in a seasonally stratified lake affected by coal-mining drainage in China. Limnology 2:55–62

    Google Scholar 

  • Yao W, Millero FJ (1993) The rate of sulfide oxidation by δMnO2 in seawater. Geochim Cosmochim Acta 57:3359–3365

    Google Scholar 

  • Yao W, Millero FJ (1996) Oxidation of hydrogen sulfide by hydrous Fe(III)oxides in seawater. Mar Chem 52:1–16

    Google Scholar 

  • Zamana LV, Borzenko SV (2011) Elemental sulfur in the brine of Lake Doroninskoe (Eastern Transbaikalia). Dokl Earth Sci 438:775–778

    Google Scholar 

  • Zerkle AL, Farquhar J, Johnston DT, Cox RP, Canfield DE (2009) Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochim Cosmochim Acta 73:291–306

    Google Scholar 

  • Zerkle AL, Kamyshny A Jr, Kump LR, Farquhar J, Oduro H, Arthur MA (2010) Sulfur cycling in a stratified euxinic lake with moderately high sulfate: constraints from quadruple S-isotopes. Geochim Cosmochim Acta 74:4953–4970

    Google Scholar 

  • Zhang J-Z, Millero FJ (1993) The products from the oxidation of H2S in seawater. Geochim Cosmochim Acta 57:1705–1718

    Google Scholar 

  • Zohary T, Sukenik A, Berman T, Nishri A (2014) Lake Kinneret: ecology and management. Springer, Heidelberg, p 683

    Google Scholar 

  • Zopfi J, Ferdelman T, Jørgensen BB, Teske A, Thamdrup B (2001) Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of the stratified Mariager Fjord (Denmark). Mar Chem 74:29–51

    Google Scholar 

  • Zopfi J, Ferdelman TG, Fossing H (2004) Distribution and fate of sulfur intermediates-sulfite, tetrathionate, thiosulfate, and elemental sulfur in marine sediments. Geol Soc Am Spec Pap 379:97–116

    Google Scholar 

Download references

Acknowledgements

We would like to thank the research boat skippers, Oz Tsabari-Dor and Moti Diamond. Anna Gluhov provided help during the sampling. Funding for this project to KA, AJF and AK was provided by the Israel Science Foundation (Grant Number 548/12), funding for AJF was provided by Fulbright Postdoctoral Fellowship and Kreitman Fellowship from the Ben-Gurion University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Kamyshny Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor Amy M. Marcarelli

The original version of this article has been revised: The missing sampling station location “F” in Fig. 1 has been re-included.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avetisyan, K., Eckert, W., Findlay, A.J. et al. Diurnal variations in sulfur transformations at the chemocline of a stratified freshwater lake. Biogeochemistry 146, 83–100 (2019). https://doi.org/10.1007/s10533-019-00601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-019-00601-5

Keywords

Navigation