Skip to main content

Advertisement

Log in

Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Characterization of the impacts of climate change on terrestrial carbon (C) cycling is important due to possible feedback mechanisms to atmospheric CO2 concentrations. We investigated soil organic matter (SOM) dynamics in the A1 and A2 horizons (~0–5.1 and ~5.1–12.3 cm depth, respectively) of a shrubland grass (Deschampsia flexuosa) after 8 years of exposure to: elevated CO2 (CO2), summer drought (D), warming (T) and all combinations hereof, with TDCO2 simulating environmental conditions for Denmark in 2075. The mean C residence time was highest in the heavy fraction (HF), followed by the occluded light fraction and the free light fraction (fLF), and it increased with soil depth, suggesting that C was stabilized on minerals at depth. A2 horizon SOM was susceptible to climate change whereas A1 horizon SOM was largely unaffected. The A2 horizon fLF and HF organic C stocks decreased by 43 and 23% in response to warming, respectively. Organic nitrogen (N) stocks of the A2 horizon fLF and HF decreased by 50 and 17%, respectively. Drought decreased the A2 horizon fLF N stock by 38%. Elevated CO2 decreased the A2 horizon fLF C stock by 39% and the fLF N stock by 50%. Under TDCO2, A2 horizon fLF C and N stocks decreased by 22 and 40%, respectively. Overall, our results indicate that shrubland SOM will be susceptible to increased turnover and associated net C and N losses in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, Van der Linden L, Beier C (2011) Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. J Exp Bot 62(12):4253–4266

    Article  Google Scholar 

  • Amundson RG, Davidson EA (1990) Carbon dioxide and nitrogenous gases in the soil atmosphere. J Geochem Explor 38(1–2):13–41

    Article  Google Scholar 

  • Andresen LC, Michelsen A, Jonasson S, Schmidt IK, Mikkelsen T, Ambus P, Beier C (2010) Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought. Plant Soil 328(1):381–396

    Article  Google Scholar 

  • Arndal MF, Schmidt IK, Kongstad J, Beier C, Michelsen A (2013) Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 42(1):1–10

    Google Scholar 

  • Badeck FW, Tcherke G, Nogue S, Piel C, Ghashghaie J (2005) Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun Mass Spectronom 19(11):1381–1391

    Article  Google Scholar 

  • Baisden WT, Amundson R, Cook AC, Brenner DL (2002) Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochem Cy 16(4):1117–1132

    Google Scholar 

  • Beare MH, Gregorich EG (2007) Physically uncomplexed organic matter. In: Carter MR, Gregoric EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Beier C, Emmett BA, Tietema A, Schmidt IK, Penuelas J, Kovács Láng E, Duce P, De Angelis P, Gorissen A, Estiarte M, de Dato D, Sowerby A, Kröel-Dulay G, Lellei-Kovács E, Kull O, Mand P, Petersen H, Gjelstrup P, Spano D, Estiarte M (2009) Carbon and nitrogen balances for six shrublands across Europe. Global Biogeochem Cy 23(4):1–13

    Article  Google Scholar 

  • Bimüller C, Dannenmann M, Tejedor J, von Lützow M, Buegger F, Meier R, Haug S, Schroll R, Kögel-Knabner I (2014) Prolonged summer droughts retard soil N processing and stabilization in organo-mineral fractions. Soil Biol Biochem 68:241–251

    Article  Google Scholar 

  • Bock M, Glaser B, Millar N (2007) Sequestration and turnover of plant- and microbially derived sugars in a temperate grassland soil during 7 years exposed to elevated atmospheric pCO2. Global Change Biol 13:478–490

    Article  Google Scholar 

  • Boesgaard K (2013) Long-term ecophysiological responses to climate change. Technical University of Denmark, Kgs Lyngby. http://orbit.dtu.dk/files/74245683/Thesis_FINAL_kboe.PDF

  • Bowden RD, Deemb L, Plantec AF, Peltre C, Nadelhoffer K, Lajtha K (2014) Litter input controls on soil carbon in a temperate deciduous forest. Soil Sci Soc Am J 78:S66–S75

    Article  Google Scholar 

  • Brunn M, Spielvogel S, Sauer T, Oelmann Y (2014) Temperature and precipitation effects on δ13C depth profiles in SOM under temperate beech forests. Geoderma 235–236:146–153

    Article  Google Scholar 

  • Buurman P, Roscoe R (2011) Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis-GC/MS study. Eur J Soil Sci 62:253–266

    Article  Google Scholar 

  • Carney K, Hungate B, Drake B, Megonigal J (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci USA 104(12):4990–4995

    Article  Google Scholar 

  • Carter MS, Ambus P, Albert K, Larsen KS, Anderson M, Prieme A, Van der Linden L, Beier C (2011) Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland. Soil Biol Biochem 43(8):1660–1670

    Article  Google Scholar 

  • Carter MS, Larsen KS, Emmett B, Estiarte M, Field C, Leith ID, Lund M, Meijide A, Mills RTE, Niinemets Ü, Peñuelas J, Portillo-Estrada M, Schmidt IK, Selsted MB, Sheppard LJ, Sowerby A, Tietema A, Beier C (2012) Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands—responses to climatic and environmental changes. Biogeosciences 9:3739–3755

    Article  Google Scholar 

  • Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52(3):345–353

    Article  Google Scholar 

  • Cotrofo MF, Gorissen A (1997) Elevated CO2 enhances below-ground C allocation in three perennial grass species at different levels of N availability. New Phytol 137:421–431

    Article  Google Scholar 

  • Cotrofo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biol 19(4):988–995

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(9):165–173

    Article  Google Scholar 

  • Derrien D, Amelung W (2011) Computing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model framework. Eur J Soil Sci 62:237–252

    Article  Google Scholar 

  • Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen KS, Morgan JA, Volder A, Beier C, Dukes JS, King J, Leuzinger S, Linder S, Luo YQ, Oren R, de Angelis P, Tingey D, Hoosbeek MR, Janssens IA (2012) Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Global Change Biol 18(9):2681–2693

    Article  Google Scholar 

  • Follett RF, Stewart CE, Preuessner EG, Kimble JM (2012) Effects of climate change on soil carbon and nitrogen storage in the US Great Plains. J Soil Water Conserv 67(5):331–342

    Article  Google Scholar 

  • Garten C, Classen AT, Norby RJ (2009) Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment. Plant Soil 319(1):85–94

    Article  Google Scholar 

  • Gregorich EG, Beare MH, Mckim UF, Skjemstad JO (2006) Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci Soc Am J 70(3):975–985

    Article  Google Scholar 

  • Gunina A, Kuzyakov Y (2014) Pathways of litter C by formation of aggregates and SOM density fractions: implications from 13C natural abundance. Soil Biol Biochem 71:95–104

    Article  Google Scholar 

  • Gyldenkærne S, Münier B, Olsen J, Elsnab Olesen S, Petersen B, Christensen B (2005) Opgørelse af CO2-emissioner fra arealanvendelse og ændringer i arealanvendelse. Arbejdsrapport fra DMU, nr. 213. In. Danmarks Miljøundersøgelser. Miljøministeriet

  • Haugwitz MS, Bergmark L, Prieme A, Christensen S, Beier C, Michelsen A (2014) Soil microorganisms respond to five years of climate change manipulations and elevated atmospheric CO2 in a temperate heath ecosystem. Plant Soil 374:211–222

    Article  Google Scholar 

  • He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand J, Hobbie S, Reich P, Zhou J (2010) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett 13(5):564–575

    Article  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176):289–292

    Article  Google Scholar 

  • Henry H, Juarez J, Field C, Vitousek P (2005) Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland. Global Change Biol 11(10):1808–1815

    Article  Google Scholar 

  • Hofmockel KS, Gallet-Budynek A, McCarthy HR, Currie WS, Jackson RB, Finzi A (2011a) Sources of increased N uptake in forest trees growing under elevated CO2: results of a large-scale 15N study. Global Change Biol 17:3338–3350

    Article  Google Scholar 

  • Hofmockel KS, Zak DR, Moran KK, Jastrow JD (2011b) Changes in forest soil organic matter pools after a decade of elevated CO2 and O3. Soil Biol Biochem 43(7):1518–1527

    Article  Google Scholar 

  • Hungate BA, Johnson DW, Dijkstra FA, Hymus G, Stiling P, Megonigal JP, Pagel AL, Moan JL, Day F, Li J, Hinkle R, Drake BG (2006) Nitrogen cycling during seven years of atmospheric CO2 enrichment in a shrub oak woodland. Ecology 87(1):26–40

    Article  Google Scholar 

  • IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgle PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • John B, Yamashita T, Ludwig B, Flessa H (2005) Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128(1–2):63–79

    Article  Google Scholar 

  • Johnsen KH, Samuelson LJ, Sanchez FG, Eaton RJ (2013) Soil carbon and nitrogen content and stabilization in mid-rotation, intensively managed sweetgum and loblolly pine stands. Forest Ecol Manag 302:144–153

    Article  Google Scholar 

  • Juo ASR, Franzluebbers K (2003) Tropical soils. Properties and management for sustainable agriculture. Oxford University Press, New York

    Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85(1):9–24

    Article  Google Scholar 

  • Kogel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171(1):61–82

    Article  Google Scholar 

  • Kongstad J, Schmidt IK, Riis-Nielsen T, Arndal MF, Mikkelsen TN, Beier C (2012) High resilience in heathland plants to changes in temperature, drought, and CO2 in combination: results from the CLIMAITE experiment. Ecosystems 15(2):269–283

    Article  Google Scholar 

  • Kotroczo Z, Fekete I, Toth JA, Tothmeresz B, Balazsy S (2008) Effect of leaf- and root-litter manipulation for carbon-dioxide efflux in forest soil. Cereal Res Commun 36:663–666

    Google Scholar 

  • Kröel-Dulay G, Ransijn J, Schmidt IK, Beier C, De Angelis P, de Dato G, Dukes JS, Emmett B, Estiarte M, Garadnai J, Kongstad J, Kovacs-Lang E, Larsen KS, Liberati D, Ogaya R, Riis-Nielsen T, Smith AR, Sowerby A, Tietema A, Penuelas J (2015) Increased sensitivity to climate change in disturbed ecosystems. Nat Commun 6:1–6

    Article  Google Scholar 

  • Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, Arndal MF, Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, van der Linden L, Maraldo K, Michelsen A, Mikkelsen TN, Pilegaard K, Prieme A, Ro-Poulsen H, Schmidt IK, Selsted MB, Stevnbak K (2011) Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biol 17(5):1884–1899

    Article  Google Scholar 

  • Leifeld J, Bassin S, Conen F, Hajdas I, Egli M, Fuhrer J (2013) Control of soil pH on turnover of belowground organic matter in subalpine grassland. Biogeochemistry 112:59–69

    Article  Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1268–1272

    Google Scholar 

  • Luo Y, Sherry R, Zhou X, Wan S (2009) Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. Global Change Biol 1(1):62–74

    Article  Google Scholar 

  • Maraldo K, Krogh PH, van der Linden L, Christensen BT, Mikkelsen TN, Beier C, Holmstrup M (2010) The counteracting effects of elevated atmospheric CO2 concentrations and drought episodes: studies of enchytraeid communities in a dry heathland. Soil Biol Biochem 42(11):1958–1966

    Article  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter. J Plant Nutr Soil Sci 171:91–110

    Article  Google Scholar 

  • Mehrabanian M (2013) Molecular geochemistry of soil organic matter by pyrolysis gas chromatography/mass spectrometry (GC/MS) technique: a review. J Soil Sci Environ Manag 4(2):11–16

    Article  Google Scholar 

  • Meyer S, Leifeild J (2013) Concurrent increase in 15N and radiocarbon age in soil density fractions. J Plant Nutr Soil Sci 176:505–508

    Article  Google Scholar 

  • Mikkelsen TN, Beier C, Holmstrup M, Schmidt IK, Ambus P, Pilegaard K, Michelsen A, Albert K, Andresen LC, Arndal MF, Bruun N, Christensen S, Danbæk S, Gundersen P, Jørgensen P, Linden LG, Kongstad J, Maraldo K, Priemé A, Riis-Nielsen T, Ro-Poulsen H, Stevnbak K, Selsted MB, Sørensen P, Larsen KS, Carter MS, Ibrom A, Martinussen T, Miglietta F, Sverdrup H (2008) Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project. Funct Ecol 22:185–195

    Google Scholar 

  • Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56

    Article  Google Scholar 

  • Munné Bosch S (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31(3):203–216

    Article  Google Scholar 

  • Nie M, Pendall E, Bell C, Wallenstein MD (2014) Soil aggregate size distribution mediates microbial climate change feedbacks. Soil Biol Biochem 68:357–365

    Article  Google Scholar 

  • Ostrowska A, Porębska G (2012) Assement of TOC-SOM and SOM-TOC conversion in forest soil. Proc J Environ Stud 21(6):1767–1775

    Google Scholar 

  • Park R, Epstein S (1961) Metabolic fractionation of C13 and C12 in plants. Plant Physiol 36(2):133–138

    Article  Google Scholar 

  • Poirier N, Derenne S, Balesdent J, Mariotti A, Massiot D, Largeau C (2003) Isolation and analysis of the non-hydrolysable fraction of a forest soil and an arable soil (Lacadee, southwest France). Eur J Soil Sci 54(2):243–255

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. In. R Foundation for statistical computing, Vienna, Austria

  • Raab GA, Bartling MH, Stapanian MA, Cole WH, Tidwell RL, Cappo KA (1990) The homogenization of environmental soil samples in bulk. In: Simmons MS (ed) Hazardous waste measurements. CRC Press, Boca Raton

    Google Scholar 

  • Reinsch S, Ambus P (2013) In situ 13CO2 pulse-labeling in a temperate heathland—development of a mobile multi-plot field setup. Rapid Commun Mass Spectronom 27:1417–1428

    Article  Google Scholar 

  • Roscoe R, Buurman P, van Lagen B, Velhorst E (2004) Transformation in occluded light fraction organic matter in a clayey oxisol; evidence from 13C-CPMAS-NMR and d13C signature. Rev Bras Cienc Solo 28:811–818

    Article  Google Scholar 

  • Scherber C, Gladbach DJ, Stevnbak K, Karsten RJ, Schmidt IK, Michelsen A, Albert KR, Larsen KS, Mikkelsen TN, Beier C, Christensen S (2013) Multi-factor climate change effects on insect herbivore performance. Ecol Evol 3(6):1449–1460

    Article  Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrel WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Sci Total Environ 247(4946):1043–1048

    Google Scholar 

  • Schmidt MWI, Rumpel C, Kogel-Knabner I (1999) Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils. Eur J Soil Sci 50(1):87–94

    Article  Google Scholar 

  • Schnitzer M, Khan SU (1978) Soil organic matter. Developments in soil science 8. Elsevier, Amsterdam

    Google Scholar 

  • Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kogel-Knabner I, Schulze ED (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10(3):1675–1691

    Article  Google Scholar 

  • Selsted MB, van der Linden L, Ibrom A, Michelsen A, Larsen KS, Pedersen JK, Mikkelsen T, Pilegaard K, Beier C, Ambus P (2012) Soil respiration is stimulated by elevated CO2 and reduced by summer drought: three years of measurements in a multifactor ecosystem manipulation experiment in a temperate heathland (CLIMAITE). Global Change Biol 18:1216–1230

    Article  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54(6):1619–1625

    Article  Google Scholar 

  • Suseela V, Tharayil N, Xing B, Dukes JS (2013) Labile compounds in plant litter reduced the sensitivity of decomposition to warming and altered precipitation. New Phytol 200:122–133

    Article  Google Scholar 

  • Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315(5812):6640–6642

    Article  Google Scholar 

  • Thockmorton HM, Bird JA, Dane L, Firestone MK, Horwarth WR (2012) The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecol Lett 15:1257–1265

    Article  Google Scholar 

  • Trumbore SE, Czimczik CI (2008) Geology—an uncertain future for soil carbon. Science 321(5895):1455–1456

    Article  Google Scholar 

  • Van Groenigen K, Qi X, Osenberg C, Luo Y, Hungate B (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344(6183):508–509

    Article  Google Scholar 

  • Wagai R, Mayer LM, Kitayama K (2009) Nature of the “occluded” low-density fraction in soil organic matter studies: a critical review. Soil Sci Plant Nutr 55(1):13–25

    Article  Google Scholar 

  • Welch BL (1947) The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34(1–2):28–35

    Google Scholar 

  • Xu M, Lou Y, Sun X, Wang W, Baniyamuddin M, Zhao K (2011) Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biol Fert Soils 47:745–752

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Nina Thomsen, Mette Flodgaard and Anja Nielsen for skilled technical and laboratory support. Professor Bent T. Christensen at Aarhus University, Denmark, provided competent guidance on initial methodology test trials. Stina Rasmussen and Henrik Breuning-Madsen at the University of Copenhagen are thanked for contributing with the textural analysis of the studied soil. The CLIMAITE experiment is financially supported by the Villum Kann Rasmussen Foundation with co-funding from Air Liquide, DONG Energy and SMC Pneumatic A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Thaysen.

Additional information

Responsible Editor: Edward Brzostek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thaysen, E.M., Reinsch, S., Larsen, K.S. et al. Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions. Biogeochemistry 133, 17–36 (2017). https://doi.org/10.1007/s10533-017-0303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0303-3

Keywords

Navigation