Skip to main content

Advertisement

Log in

Shifts in the carbon dynamics in a tropical lowland river system (Tana River, Kenya) during flooded and non-flooded conditions

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Rivers transport sediment and carbon (C) from the continents to the ocean, whereby the magnitude and timing of these fluxes depend on the hydrological regime. We studied the sediment and carbon dynamics of a tropical river system at two sites along the lower Tana River (Kenya), separated by a 385 km stretch characterized by extensive floodplains, to understand how the river regime affects within-river C processing as well as the C exchange between floodplain and river. Sampling took place during three different wet seasons (2012–2014), with extensive flooding during one of the campaigns. We measured the suspended sediment concentration, the concentration and stable isotope signature of three different carbon species (particulate and dissolved organic carbon, POC and DOC, and dissolved inorganic carbon, DIC) and other auxiliary parameters. During non-flooded conditions, the total C flux was dominated by POC (57–72%) and there was a downstream decrease of the total C flux. DIC was dominating during the flooded season (56–67%) and the flux of DIC and DOC coming from the inundated floodplains resulted in a downstream increase of the total carbon flux. Our data allowed us to construct a conceptual framework for the C dynamics in river systems, whereby nine major fluxes were identified. The application of this framework highlighted the dominance of POC during non-flooded conditions and the significant CO2 emissions during the flooded season. Furthermore, it identified the exchange of POC with the floodplain as an important factor to close the C budget of the river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abril G, Martinez J-M, Artigas LF, Moreira-Turcq P, Benedetti MF, Vidal L, Meziane T, Kim J-H, Bernardes MC et al (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395–398. doi:10.1038/nature12797

    Article  Google Scholar 

  • Abril G, Bouillon S, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Omengo FO, Geeraert N, Deirmendjian L et al (2015) Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12:67–78

    Article  Google Scholar 

  • Alin SR, Rasera MFFL, Salimon CI, Richey JE, Holtgrieve GW, Krusche AV, Snidvongs A (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res 116:G01009. doi:10.1029/2010JG001398

    Article  Google Scholar 

  • Amado AM, Meirelles-Pereira F, Vidal LO, Sarmento H, Suhett AL, Farjalla VF, Cotner JB, Roland F (2013) Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones. Front Microbiol. doi:10.3389/fmicb.2013.00167

    Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60. doi:10.1890/100014

    Article  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600. doi:10.1038/ngeo618

    Article  Google Scholar 

  • Bauer JE, Bianchi TS (2011) Dissolved organic carbon cycling and transformation. In: Wolanski E, McLusky D (eds) Treatise on estuarine and coastal science, vol 5. Waltham: Academic Press, pp 7–68. doi: 10.1016/B978-0-12-374711-2.00502-7

  • Berggren M, Lapierre J-F, del Giorgio PA (2012) Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J 6:984–993. doi:10.1038/ismej.2011.157

    Article  Google Scholar 

  • Borges AV, Abril G, Darchambeau F, Teodoru CR, Deborde J, Vidal LO, Lambert T, Bouillon S (2015a) Divergent biophysical controls of aquatic CO2 and CH4 in the world’s two largest rivers. Sci Rep 5:15614. doi:10.1038/srep15614

    Article  Google Scholar 

  • Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T et al (2015b) Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8:637–642. doi:10.1038/ngeo2486

    Article  Google Scholar 

  • Bouillon S, Abril G, Borges AV, Dehairs F, Govers G, Hughes HJ, Merckx R, Meysman FJR (2009) Distribution, origin and cycling of carbon in the Tana River (Kenya): a dry season basin-scale survey from headwaters to the delta. Biogeosciences 6:2475–2493

    Article  Google Scholar 

  • Bouillon S, Yambélé A, Spencer RGM, Gillikin DP, Hernes PJ, Six J, Merckx R, Borges AV (2012) Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin). Biogeosciences 9:2045–2062. doi:10.5194/bg-9-2045-2012

    Article  Google Scholar 

  • Brunet F, Dubois K, Veizer J, Ndondo GN, Ngoupayou JN, Boeglin J-L, Probst J-L (2009) Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon. Chem Geol 265:563–572

    Article  Google Scholar 

  • Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, et al. (2014) Carbon and other biogeochemical cycles. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–570

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185. doi:10.1007/s10021-006-9013-8

    Article  Google Scholar 

  • Coynel A, Seyler P, Etcheber H, Meybeck M, Orange D (2005) Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River. Global Biogeochem Cycles 19:GB4019. doi: 10.1029/2004GB002335

  • de Fátima M, Rasera M, Krusche AV, Richey JE, Ballester MVR, Victória RL (2013) Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian Rivers. Biogeochemistry 116:241–259

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, et al. (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • DHV (1986) Tana river morphology studies, final report: volume 1 main report. Delft Hydraulics Laboratory, Delft

  • Ellis EE, Richey JE, Aufdenkampe AK, Krusche AV, Quay PD, Salimon C, da Cunha HB (2012) Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin. Limnol Oceanogr 57:527–540. doi:10.4319/lo.2012.57.2.0527

    Article  Google Scholar 

  • Engle DL, Melack JM, Doyle RD, Fisher TR (2008) High rates of net primary production and turnover of floating grasses on the Amazon floodplain: implications for aquatic respiration and regional CO2 flux. Glob Chang Biol 14:369–381

    Article  Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. Norton, New York, p 397

    Google Scholar 

  • Geeraert N, Omengo FO, Tamooh F, Paron P, Bouillon S, Govers G (2015) Sediment yield of the lower Tana River, Kenya, is insensitive to dam construction: sediment mobilization processes in a semi-arid tropical river system. Earth Surf Proc Land 40:1827–1838. doi:10.1002/esp.3763

    Article  Google Scholar 

  • Geeraert N, Omengo F, Govers G, Bouillon S (2016) Dissolved organic carbon lability and stable isotope shifts during microbial decomposition in a tropical river system. Biogeosci 13:517–525. doi:10.5194/bg-13-517-2016

    Article  Google Scholar 

  • Gillikin DP, Bouillon S (2007) Letter to the editor. Rapid CommunMass Sp 21:1475–1478. doi:10.1002/rcm

    Article  Google Scholar 

  • Hotchkiss E, Hall R Jr, Sponseller R, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J (2015) Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci 8:696–699. doi:10.1038/NGEO2507

    Article  Google Scholar 

  • Kieber RJ, Whitehead RF, Skrabal SA (2006) Photochemical production of dissolved organic carbon from resuspended sediments. Limnol Oceanogr 51:2187–2195

    Article  Google Scholar 

  • Koné Y, Abril G, Delille B, Borges A (2010) Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry 100:21–37

    Article  Google Scholar 

  • Lambert T, Darchambeau F, Bouillon S, Alhou B, Mbega J-D, Teodoru CR, Nyoni FC, Massicotte P, Borges AV (2015) Landscape control on the spatial and temporal variability of chromophoric dissolved organic matter and dissolved organic carbon in large African rivers. Ecosystems 18:1224–1239. doi:10.1007/s10021-015-9894-5

    Article  Google Scholar 

  • Lauerwald R, Laruelle GG, Hartmann J, Ciais P, Regnier PA (2015) Spatial patterns in CO2 evasion from the global river network. Global Biogeochem Cycles 29:534–554. doi:10.1002/2014GB004941

    Article  Google Scholar 

  • Leauthaud C, Belaud G, Duvail S, Moussa R, Grünberger O, Albergel J (2013) Characterizing floods in the poorly gauged wetlands of the Tana River Delta, Kenya, using a water balance model and satellite data. Hydrol Earth Sys Sci 17(8):3059–3075. doi:10.5194/hess-17-3059-2013

    Article  Google Scholar 

  • Lesack LFW, Hecky RE, Melack JM (1984) Transport of carbon, nitrogen, phosphorus, and major solutes in the Gambia River, West Africa. Limnol Oceanogr 29(4):816–830

    Article  Google Scholar 

  • Lewis E, Wallace D (1998) Program developed for CO2 system calculations (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Dept. of Energy, Oak Ridge, TN). ORNL/CDIAC-105

  • Liu Z, Dreybrodt W, Liu H (2011) Atmospheric CO2 sink: silicate weathering or carbonate weathering? Appl Geochem 26:S292–S294

    Article  Google Scholar 

  • Lorke A, Bodmer P, Noss C, Alshboul Z, Koschorreck M, Somlai-Haase C, Bastviken D, Flury S, McGinnis DF, Maeck A, Müller D, Premke K (2015) Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters. Biogeosciences 12:7013–7024

    Article  Google Scholar 

  • Marwick TR (2014) Biogeochemistry of inland waters: insights from (sub)tropical river basins of Africa. Dissertation, University of Leuven

  • Marwick TR, Borges AV, Van Acker K, Darchambeau F, Bouillon S (2014) Disproportionate contribution of riparian inputs to organic carbon pools in freshwater systems. Ecosystems 17:974–989

    Article  Google Scholar 

  • Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541. doi:10.1038/nature03880

    Article  Google Scholar 

  • Melack JM, Engle D (2009) An organic carbon budget for an Amazon floodplain lake. Verh Internat Verein Limnol 30:1179–1182

    Google Scholar 

  • Melack JM, Forsberg BR (2001) The biogeochemistry of the Amazon Basin and its role in a changing world. In: McClain M, Victoria R, Richey JE (eds) Oxford University Press, Oxford. pp 235–276

  • Melack JM, Hess LL, Gastil M, Forsberg BR, Hamiltons SK, Lima IBT, Novo EMLM (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob Chang Biol 10:530–544. doi:10.1111/j.1529-8817.2003.00763.x

    Article  Google Scholar 

  • Millero FJ (1979) The thermodynamics of the carbonate system in seawater. Geochemica et Cosmochemica Acta 43:1651–1661

    Article  Google Scholar 

  • Mora A, Laraque A, Moreira-Turch P, Alfonso JA (2014) Temporal variation and fluxes of dissolved and particulate organic carbon in the Apure, Caura and Orinoco rivers, Venezuela. J S Am Earth Sci 54:47–56

    Article  Google Scholar 

  • Moreira-Turcq P, Bonnet M-P, Amorim M, Bernardes M, Lagane C, Maurice L, Perez M, Seyler P (2013) Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River. Global Biogeochem Cycles 27:119–130

    Article  Google Scholar 

  • Omengo FO, Alleman T, Geeraert N, Bouillon S, Govers G (2016) Sediment deposition patterns in a tropical floodplain, Tana River, Kenya. Catena 143:57–69. doi:10.1016/j.catena.2016.03.024

    Article  Google Scholar 

  • Pettit N, Bayliss P, Davies P, Hamilton S, Warfe D, Bunn S, Douglas M (2011) Seasonal contrasts in carbon resources and ecological processes on a tropical floodplain. Freshwater Biol 56(6):1047–1064

    Article  Google Scholar 

  • Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr 2:41–53

    Article  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359. doi:10.1038/nature12760

    Article  Google Scholar 

  • Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens IA, Laruelle GG, Lauerwald R, Luyssaert S et al (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607. doi:10.1038/ngeo1830

    Article  Google Scholar 

  • Richardson DC, Newbold JD, Aufdenkampe AK, Taylor PG, Kaplan LA (2013) Measuring heterotrophic respiration rates of suspended particulate organic carbon from stream ecosystems. Limnol Oceanogr 11:247–261. doi:10.4319/lom.2013.11.247

    Article  Google Scholar 

  • Richey J (2004) Pathways of atmospheric CO2 through fluvial systems. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate and the natural world. Island Press, Washington, D.C., pp 329–340

  • Richey J, Melack J, Aufdenkampe A, Ballester V, Hess L (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  Google Scholar 

  • Rudorff CM, Melack JM, Bates PD (2014a) Flooding dynamics on the lower Amazon floodplain: 2. Seasonal and interannual hydrological variability. Water Resour Res 50:635–649. doi:10.1002/2013WR014714

    Article  Google Scholar 

  • Rudorff CM, Melack JM, Bates PD (2014b) Flooding dynamics on the lower Amazon floodplain: 1. Hydraulic controls on water elevation, inundation extent, and river-floodplain discharge. Water Resour Res 50 doi:10.1002/2013WR014091

  • Spencer RG, Hernes PJ, Aufdenkampe AK, Baker A, Gulliver P, Stubbins A, Aiken GR, Dyda RY, Butler KD et al (2012) An initial investigation into the organic matter biogeochemistry of the Congo River. Geochim Cosmochim Acta 84:614–627

    Article  Google Scholar 

  • Syvitski JPM, Cohen S, Kettner AJ, Brakenridge GR (2014) How important and different are tropical rivers? An overview. Geomorphology 227:5–17. doi:10.1016/j.geomorph.2014.02.029

    Article  Google Scholar 

  • Tamooh F (2013) Carbon cycling from a catchment perspective: an integrated approach to terrestrial-aquatic linkages in the Tana River basin, Kenya. Dissertation, University of Leuven

  • Tamooh F, Van den Meersche K, Meysman F, Marwick TR, Borges AV, Merckx R, Dehairs F, Schmidt S, Nyunja J et al (2012) Distribution and origin of suspended matter and organic carbon pools in the Tana River Basin, Kenya. Biogeosciences 9(8):2905–2920. doi:10.5194/bg-9-2905-2012

    Article  Google Scholar 

  • Tamooh F, Borges AV, Meysman F, Van den Meersche K, Dehairs F, Merckx R, Bouillon S (2013) Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River Basin, Kenya. Biogeosciences 10:6911–6928. doi:10.5194/bgd-10-6911-2013

    Article  Google Scholar 

  • Tamooh F, Meysman FJR, Borges AV, Marwick TR, Van den Meersche K, Dehairs F, Merckx R, Bouillon S (2014) Sediment and carbon fluxes along a longitudinal gradient in the lower Tana River (Kenya). J Geophys Res Biogeosci 119:1340–1353. doi:10.1002/2013JG002358

    Article  Google Scholar 

  • Teodoru CR, Del Giorgio PA, Prairie YT, Camire M (2009) Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada. Global Biogeochem Cycles 23:GB2012. doi:10.1029/2008GB003404

  • Teodoru CR, Nyoni F, Borges A, Darchambeau F, Nyambe I, Bouillon S (2015) Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12:2431–2453

    Article  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  Google Scholar 

  • Tweed S, Leblanc M, Bass A, Harrington GA, Munksgaard N, Bird MI (2015) Leaky savannas: the significance of lateral carbon fluxes in the seasonal tropics. Hydrol Process. doi:10.1002/hyp.10640

    Google Scholar 

  • Wang ZA, Bienvenu DJ, Mann PJ, Hoering KA, Poulsen JR, Spencer RGM, Holmes RM (2013) Inorganic carbon speciation and fluxes in the Congo River. Geophys Res Lett 40:511–516. doi:10.1002/grl.50160

    Article  Google Scholar 

  • Ward ND, Keil RG, Medeiros PM, Brito DC, Cunha AC, Dittmar T, Yager PL, Krusche AV, Richey JE (2013) Degradation of terrestrially derived macromolecules in the Amazon River. Nat Geosci 6(7):530–533. doi:10.1038/ngeo1817

    Article  Google Scholar 

  • Wehrli B (2013) Conduits of the carbon cycle. Nature 503:9–10

    Article  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chem 2:203–215

    Article  Google Scholar 

  • World Bank Climate Variability Tool (2015) http://iridl.ldeo.columbia.edu/maproom/Global/World_Bank/Climate_Variability/index.html#tabs-1

  • Zurbrügg R, Suter S, Lehmann MF, Wehrli B, Senn DB (2013) Organic carbon and nitrogen export from a tropical dam-impacted floodplain system. Biogeosciences 10:23–38. doi:10.5194/bg-10-23-2013

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the KU Leuven Special Research Fund, the Research Foundation Flanders (FWO–Vlaanderen, Project G024012N), and an ERC Starting Grant (240002, AFRIVAL). We are grateful to the Kenya Wildlife Service (KWS) for assistance during field experiments and to Z. Kelemen for help with stable isotope analyses. AVB is a senior research associate at the Fonds National de la Recherche Scientifique (FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Geeraert.

Additional information

Responsible Editor: Charles T. Driscoll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geeraert, N., Omengo, F.O., Borges, A.V. et al. Shifts in the carbon dynamics in a tropical lowland river system (Tana River, Kenya) during flooded and non-flooded conditions. Biogeochemistry 132, 141–163 (2017). https://doi.org/10.1007/s10533-017-0292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0292-2

Keywords

Navigation