Skip to main content
Log in

Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa)

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We report a data-set of dissolved methane (CH4) in three rivers (Comoé, Bia and Tanoé) and five lagoons (Grand-Lahou, Ebrié, Potou, Aby and Tendo) of Ivory Coast (West Africa), during the four main climatic seasons (high dry season, high rainy season, low dry season and low rainy season). The surface waters of the three rivers were over-saturated in CH4 with respect to atmospheric equilibrium (2221–38719%), and the seasonal variability of CH4 seemed to be largely controlled by dilution during the flooding period. The strong correlation of CH4 concentrations with the partial pressure of CO2 (pCO2) and dissolved silicate (DSi) confirm the dominance of a continental sources (from soils) for both CO2 and CH4 in these rivers. Diffusive air–water CH4 fluxes ranged between 25 and 1187 μmol m−2 day−1, and annual integrated values were 288 ± 107, 155 ± 38, and 241 ± 91 μmol m−2 day−1 in the Comoé, Bia and Tanoé rivers, respectively. In the five lagoons, surface waters were also over-saturated in CH4 (ranging from 1496 to 51843%). Diffusive air–water CH4 fluxes ranged between 20 and 2403 μmol m−2 day−1, and annual integrated values were 78 ± 34, 338 ± 217, 227 ± 79, 330 ± 153 and 326 ± 181 μmol m−2 day−1 in the Grand-Lahou, Ebrié, Potou, Aby and Tendo lagoons, respectively. The largest CH4 over-saturations were observed in the Tendo and Aby lagoons that are permanently stratified systems (unlike the other three lagoons), leading to anoxic bottom waters favorable for a large CH4 production. In addition, these two stratified lagoons showed low pCO2 values due to high primary production, which suggests an efficient transfer of organic matter across the pycnocline. As a result, the stratified Tendo and Aby lagoons were respectively, a low source of CO2 to the atmosphere and a sink of atmospheric CO2 while the other three well-mixed lagoons were strong sources of CO2 to the atmosphere but less over-saturated in CH4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

%CH4 :

Percent of CH4 saturation

a :

Coefficient of linear regression

DSi:

Dissolved silica

FCH4 :

Diffusive air–water CH4 flux

HDS:

High dry season

HRS:

High rainy season

k :

Gas transfer velocity

k 600 :

Gas transfer velocity normalized to a Schmidt number of 600

Lat:

Latitude

LDS:

Low dry season

Long:

Longitude

LRS:

Low rainy season

n :

number of measurements

NCEP:

National Centers for Environmental Prediction

pCO2 :

Partial pressure of CO2

Sc:

Schmidt number of CH4

TgCH4 :

Teragrams of CH4

u :

Wind speed

Δ[CH4]:

Air–water gradient of CH4

ΔpCO2 :

Air–water gradient of pCO2

References

  • Abril G, Borges AV (2004) Carbon dioxide and methane emissions from estuaries. In: Tremblay A, Varfalvy L, Roehm C, Garneau M (eds) Greenhouse gases emissions from natural environments and hydroelectric reservoirs: fluxes and processes. Springer, Berlin

    Google Scholar 

  • Abril G, Iversen N (2002) Methane dynamics in a shallow, non-tidal, estuary (Randers Fjord, Denmark). Mar Ecol Prog Ser 230:171–181. doi:10.3354/meps230171

    Article  Google Scholar 

  • Abril G, Commarieu M-V, Guérin F (2007) Enhanced methane oxidation in an estuarine turbidity maximum. Limnol Oceanogr 52:470–475

    Article  Google Scholar 

  • Adingra AA, Arfi R (1998) Organic and bacterial pollution in the Ebrié lagoon, Côte d’Ivoire. Mar Pollut Bull 36:689–695. doi:10.1016/S0025-326X(98)00033-2

    Article  Google Scholar 

  • Bange HW (2006) Nitrous oxide and methane in European coastal waters. Estuar Coast Shelf Sci 70:361–374. doi:10.1016/j.ecss.2006.05.042

    Article  Google Scholar 

  • Bange HW, Bartell UH, Rapsomanikis S, Andreae MO (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochem Cycles 8:465–480. doi:10.1029/94GB02181

    Article  Google Scholar 

  • Barnes RSK (1980) Coastal lagoons. Cambridge University Press, Cambridge

    Google Scholar 

  • Bartlett KB, Bartlett DS, Harris RC, Sebacher DI (1987) Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4:183–202. doi:10.1007/BF02187365

    Article  Google Scholar 

  • Bartlett KB, Crill PM, Bonassi JA, Richey JE, Harris RC (1990) Methane flux from the Amazon River floodplain: emissions during rising water. J Geophys Res 95:16773–16778. doi:10.1029/JD095iD10p16773

    Article  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:GB4009. doi:10.1029/2004GB002238

    Article  Google Scholar 

  • Binet D, Le Reste L, Diouf PS (1995) The influence of runoff and fluvial outflow on the ecosystems and living resources of West African coastal waters. FAO Fish Tech Pap 349:89–118

    Google Scholar 

  • Borges AV, Vanderborght J-P, Schiettecatte L-S, Gazeau F, Ferrón-Smith S, Delille B, Frankignoulle M (2004a) Variability of the gas transfer velocity of CO2 in a macrotidal estuary (The Scheldt). Estuaries 27:595–605. doi:10.1007/BF02907647

    Article  Google Scholar 

  • Borges AV, Delille B, Schiettecatte L-S, Gazeau F, Abril G, Frankignoulle M (2004b) Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol Oceanogr 49:1630–1641

    Article  Google Scholar 

  • Brenon I, Monde S, Pouvreau N, Maurin JC (2004) Modeling hydrodynamics in the Ebrié Lagoon (Côte d’Ivoire). J Afr Earth Sci 39:535–540. doi:10.1007/s10661-008-0649-z

    Article  Google Scholar 

  • Castel J, Caumette P, Herbert R (1996) Eutrophication gradients in coastal lagoons as exemplified by the Bassin d’Arcachon and the étang du Prévost. Hydrobiologia 329:ix–xxviii. doi:10.1007/BF00034542

    Article  Google Scholar 

  • Chanton JP, Martens CS, Kelley CA (1989) Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnol Oceanogr 34:807–819

    Article  Google Scholar 

  • Chantraine J-M (1980) La lagune Aby (Côte d’Ivoire). Morphologie, hydrologie, paramètres physico-chimiques. Doc Sci Centre Rech Océanogr Abidjan 2:39–70

    Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2:299–327. doi:10.1029/GB002i004p00299

    Article  Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110. doi:10.1071/MF00084

    Article  Google Scholar 

  • De Angelis MA, Lilley MD (1987) Methane in surface waters of Oregon estuaries and rivers. Limnol Oceanogr 32:716–722

    Article  Google Scholar 

  • De Angelis MA, Scranton MI (1993) Fate of methane in the Hudson river and estuary. Global Biogeochem Cycles 7:509–523. doi:10.1029/93GB01636

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi:10.1126/science.1156401

    Article  Google Scholar 

  • Durand JR, Chantraine JM (1982) L’environnement climatique des lagunes ivoiriennes. Rev Hydrobiol Trop 15:85–113

    Google Scholar 

  • Durand JR, Skubich M (1982) Les lagunes ivoiriennes. Aquaculture 27:211–250. doi:10.1016/0044-8486(82)90059-X

    Article  Google Scholar 

  • Dürr HH, Meybeck M, Dürr SH (2005) Lithologic composition of the Earth’s continental surfaces derived from a new digital map emphasizing riverine material transfer. Global Biogeochem Cycles 19:GB002515. doi:10.1029/2005GB002515

    Article  Google Scholar 

  • Fenchel T, Bernard C, Esteban G, Findlay BJ, Hansen PJ, Iversen N (1995) Microbial diversity and activity in a Danish fjord with anoxic deep waters. Ophelia 43:45–100

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Hirota M, Senga Y, Seike Y, Nohara S, Kunii H (2007) Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere 68:597–603. doi:10.1016/j.chemosphere.2007.01.002

    Article  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JC (2001) Carbon dioxide and methane evasion from temperate peatland stream. Limnol Oceanogr 46:847–857

    Article  Google Scholar 

  • Houweling S, Dentener F, Lelieveld J (2000) Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands. J Geophys Res 105:17243–17255. doi:10.1029/2000JD900193

    Article  Google Scholar 

  • Hughes RH, Hughes JS (1992) A directory of African wetlands. IUCN, UNEP and WCMC, Gland, Nairobi, Cambridge

    Google Scholar 

  • Jallow BP, Toure S, Barrow MMK, Mathieu AA (1999) Coastal zone of the Gambia and the Abidjan region in Côte d’Ivoire: sea level rise vulnerability, response strategies, and adaptation options. Clim Res 12:129–136. doi:10.3354/cr012129

    Article  Google Scholar 

  • Johnson HK (1999) Simple expressions for correcting wind speed data for elevation. Coast Eng 36:263–269. doi:10.1016/S0378-3839(99)00016-2

    Article  Google Scholar 

  • Jones JB, Mulholland PJ (1998a) Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry 40:57–72. doi:10.1023/A:1005914121280

    Article  Google Scholar 

  • Jones JB, Mulholland PJ (1998b) Methane input and evasion in a hardwood forest stream: effects of subsurface flow from shallow and deep pathways. Limnol Oceanogr 43:1243–1250

    Article  Google Scholar 

  • Kelley CA, Martens CS, Chanton JP (1990) Variations in sedimentary carbon remineralization rates in the White Oak River estuary, North Carolina. Limnol Oceanogr 35:372–383

    Article  Google Scholar 

  • Kelley CA, Martens CS, Ussler W III (1995) Methane dynamics across a tidally flooded riverbank margin. Limnol Oceanogr 40:1112–1129

    Article  Google Scholar 

  • Khalil MAK, Butenhoff CL, Rasmussen RA (2007) Atmospheric methane: trends and cycles of sources and sinks. Environ Sci Technol 41:2131–2137. doi:10.1021/es061791t

    Article  Google Scholar 

  • Kjerfve B (1985) Comparative oceanography of coastal lagoons. In: Wolfe DA (ed) Estuarine variability. Academic Press, New York

    Google Scholar 

  • Koné YJM, Abril G, Kouadio KN, Delille B, Borges AV (2009) Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa). Estuar Coast 32:246–260. doi:10.1007/s12237-008-9121-0

    Article  Google Scholar 

  • Kouassi AM, Kaba N, Métongo BS (1995) Land-based sources of pollution and environmental quality of the Ebrié lagoon waters. Mar Pollut Bull 30:295–300. doi:10.1016/0025-326X(94)00245-5

    Article  Google Scholar 

  • Lilley MD, De Angelis MA, Olson EJ (1996) Methane concentrations and estimated fluxes from Pacific northwest rivers. Mitt Int Ver Limnol 25:187–196

    Google Scholar 

  • Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, de Wilde H, Helder W, Seifert R, Christof O (2002) Methane distribution in tidal estuaries. Biogeochemistry 59:95–119. doi:10.1023/A:1015515130419

    Article  Google Scholar 

  • Mikaloff Fletcher SE, Tans PP, Bruhwiler LM, Miller JB, Heimann M (2004) CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes. Global Biogeochem Cycles 18:GB4004. doi:10.1029/2004GB002223

    Article  Google Scholar 

  • O’Connor DJ, Dobbins WE (1958) Mechanism of reaeration in natural streams. Trans Am Soc Civ Eng 123:641–684

    Google Scholar 

  • Purvaya R, Ramesh R (2000) Human impacts on methane emission from mangrove ecosystems in India. Reg Environ Change 1:86–97. doi:10.1007/PL00011537

    Article  Google Scholar 

  • Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24:312–317. doi:10.2307/1352954

    Article  Google Scholar 

  • Richey JE, Devol AH, Wofsy SC, Victoria R, Riberio MNG (1988) Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol Oceanogr 33:551–561

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdemkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620. doi:10.1038/416617a

    Article  Google Scholar 

  • Rigby M, Prinn RG, Fraser PJ, Simmonds PG, Langenfelds RL, Huang J, Cunnold DM, Steele LP, Krummel PB, Weiss RF, O’Doherty S, Salameh PK, Wang HJ, Harth CM, Mühle J, Porter LW (2008) Renewed growth of atmospheric methane. Geophys Res Lett 35:L22805. doi:10.1029/2008GL036037

    Article  Google Scholar 

  • Sansone FJ, Holmes ME, Popp BN (1999) Methane stable isotopic ratios and concentrations as indicators of methane dynamics in estuaries. Global Biogeochem Cycles 13:463–474. doi:10.1029/1999GB900012

    Article  Google Scholar 

  • Scheren PAGM, Kroeze C, Janssen FJJG, Hordijk L, Ptasinski KJ (2004) Integrated water pollution assessment of the Ebrié lagoon, Ivory Coast, West Africa. J Mar Syst 44:1–17. doi:10.1016/j.jmarsys.2003.08.002

    Article  Google Scholar 

  • Scranton MI, McShane K (1991) Methane fluxes in the southern North Sea: the role of European rivers. Cont Shelf Res 11:37–52. doi:10.1016/0278-4343(91)90033-3

    Article  Google Scholar 

  • Shalini A, Ramesh R, Purvaja R, Barnes J (2006) Spatial and temporal distribution of methane in an extensive shallow estuary, south India. J Earth Syst Sci 115:451–460. doi:10.1007/BF02702873

    Article  Google Scholar 

  • Smith LK, Lewis WM Jr, Chanton JP, Cronin G, Hamilton SK (2000) Methane emissions from the Orinoco River floodplain, Venezuela. Biogeochemistry 51:113–140. doi:10.1023/A:1006443429909

    Article  Google Scholar 

  • Sorokin YI, Sorokin P, Giovanardi O, Dalla Venezia L (1996) Study of ecosystem of the Lagoon of Venice, with emphasis on anthropogenic impact. Mar Ecol Progr Ser 141:247–261. doi:10.3354/meps141247

    Article  Google Scholar 

  • St Louis V, Kelly C, Duchemin E, Rudd JWM, Rosenberg DM (2000) Reservoir surface as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 20:766–775. doi:10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2

    Article  Google Scholar 

  • Upstill-Goddard RC, Barnes J, Frost T, Punshon S, Owens NJP (2000) Methane in the Southern North Sea: low salinity inputs, estuarine removal and atmospheric flux. Global Biogeochem Cycles 14:1205–1217. doi:10.1029/1999GB001236

    Article  Google Scholar 

  • Verma A, Subramanian V, Ramesh R (2002) Methane emission from a coastal lagoon: Vembanad Lake, West Coast India. Chemosphere 47:883–889. doi:10.1016/S0045-6535(01)00288-0

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382. doi:10.1029/92JC00188

    Article  Google Scholar 

  • Ward BB, Kilpatrick KA, Novelli PC, Scranton MI (1987) Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters. Nature 327:226–229. doi:10.1038/327226a0

    Article  Google Scholar 

  • Wilkinson PE, Lamontagne RE, Larson RE, Swinnerton JW (1978) Atmospheric trace gases and land and sea breezes at the Sepik River Coast of Papua, New Guinea. J Geophys Res 83:3672–3674

    Article  Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210. doi:10.1016/S0012-8252(01)00062-9

    Article  Google Scholar 

  • Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80. doi:10.1021/je60068a029

    Article  Google Scholar 

  • Zappa CJ, Raymond PA, Terray EA, McGillis WR (2003) Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26:1401–1415. doi:10.1007/BF02803649

    Article  Google Scholar 

  • Zappa CJ, McGillis WR, Raymond PA, Edson JB, Hintsa EJ, Zemmelink HJ, Dacey JWH, Ho DT (2007) Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys Res Lett 34:L10601. doi:10.1029/2006GL028790

    Article  Google Scholar 

  • Zhang GL, Zhang J, Kang YB, Liu SM (2004) Distributions and fluxes of methane in the East China Sea and the Yellow Sea in spring. J Geophys Res 109:C07011. doi:10.1029/2004JC002268

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Prof. A. Ouattara and Prof. G. Gourène from the Laboratoire d’Environnement et de Biologie Aquatique of the University of Abobo-Adjamé for assistance and support throughout the project and field work, N.M. Seu for help in sampling, D. Poirier for CH4 analysis, and T. Christensen (Associate Editor) and an anonymous reviewer for comments on a previous version of the manuscript. A.V.B. and B.D. are research associates at the Fonds National de la Recherche Scientifique. Y.J.-M.K. received financial support from the Ivory Coast government, from the Agence Universitaire de la Francophonie (6313PS657) and the Fondation Alice Seghers. This is MARE contribution n°167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Borges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koné, Y.J.M., Abril, G., Delille, B. et al. Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry 100, 21–37 (2010). https://doi.org/10.1007/s10533-009-9402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9402-0

Keywords

Navigation