Skip to main content
Log in

Biological nitrogen fixation in a post-volcanic chronosequence from south-central Chile

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Biological nitrogen fixation is a key ecosystem function incorporating new nitrogen (N) during primary successions. Increasing evidence from tropical and northern temperate forests shows that phosphorus (P) and molybdenum (Mo) either alone or in combination limit the activity of free-living diazotrophs. In this study, we evaluated the effects of Mo, P, and carbon (C) addition, either singly or in combination, and moisture, on diazotrophic activity in a post-volcanic forest chronosequence in south-fentral Chile. Diazotrophic activity, both free-living (associated with fine litter) and symbiotic (associated with the moss Racomitrium lanuginosum and the cyanolichens Pseudocyphellaria berberina and P. coriifolia), was evaluated by incubation of samples and subsequent acetylene reduction assays conducted in the field and laboratory, in winter, spring and autumn of two consecutive years. Results showed that diazotrophic activity varied with the season of the year (lowest during the drier spring season), successional stage (highest in the maximal stage), and N-fixer community type (highest in symbiotic diazotrophs). In general, C+P+Mo limitation was documented for heterotrophic diazotrophs and P+Mo limitation for symbiotic diazotrophs. Limitation of diazotrophic activity was not associated with soil nutrient and C status in the chronosequence. Strong inhibition of diazotrophic activity by high N addition and by low moisture suggests that reductions in precipitation expected for south-central Chile under climate change, as well as increasing inputs of reactive N from atmospheric deposition due to increasing use of N fertilizers, may drastically alter the composition and functional role of cryptogamic assemblages in native forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackermann K, Zackrisson O, Rousk J, Jones D, DeLuca TH (2012) N2 fixation in feather mosses is a sensitive indicator of N deposition in boreal forests. Ecosystems 15:986–998

    Article  Google Scholar 

  • Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AM, Hedin LO (2008) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45

    Article  Google Scholar 

  • Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with lichen symbiosis. Appl Environ Microbiol 77:1309–1314

    Article  Google Scholar 

  • Bellenger JP, Wichard T, Xu Y, Kraepel AML (2011) Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environ Microbiol 13:1395–1411

    Article  Google Scholar 

  • Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soils crusts: structure function and management. Ecol Stud Ser 150. Springer, Berlin, pp 241–261

  • Benner JW, Vitousek PM (2012) Cyanolichens: a link between the phosphorus and nitrogen cycles in a Hawaiian montane forest. J Trop Ecol 28:73–81

    Article  Google Scholar 

  • Brown KA, Harris DF, Wilker MB, Rsamussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters JW, Seefeldt LC, King PW (2016) Light-driven dinitrogen reduction catalized by a CdS:nitrogenase MoFe protein biohybrid. Science 352:448–450

    Article  Google Scholar 

  • Chen G, Lockhart RA (1997) Box-cox transformed linear models: a parameter-based asymptotic approach. Can J Stat 25:517–529

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fisher JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial nitrogen (N2) in natural ecosystems. Glob Biogeochem Cycles 13:623–645

    Article  Google Scholar 

  • Crews TE, Farrington H, Vitousek PM (2000) Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long term ecosystem development in Hawaii. Ecosystems 3:386–395

    Article  Google Scholar 

  • Cusack DF, Silver W, McDowell WH (2009) Biological nitrogen fixation in two tropical forests: ecosystem level patterns and effects of nitrogen fertilization. Ecosystems 12:1299–1315

    Article  Google Scholar 

  • De Luca TH, Zackrisson O, Gundale MJ, Nilsson MC (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181

    Article  Google Scholar 

  • Desai MS, Assig K, Dattagupta S (2013) Nitrogen fixation in distinct microbial niches within a chemoautotrophy-driven cave ecosystem. ISME J 7:2411–2423

    Article  Google Scholar 

  • Di Castri F, Hajek F (1995) Bioclimatografía de Chile. Dirección de Investigación. Universidad Católica de Chile

  • FAO (2015) http://knoema.es/FAORSF2015/fao-resource-statistics-fertilizers-2015

  • Gundale MJ, Gustafsson H, Nilsson MCh (2009) The sensitivity of nitrogen fixation by feathermoss-cyanobacteria association to litter and moisture variability in young and old boreal forests. Can J For Res 39:2542–2549

    Article  Google Scholar 

  • Gundale MJ, Nilsson M, Bansal S, Jäderlund A (2012) The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytol 194:453–463

    Article  Google Scholar 

  • Gundale MJ, Bach LH, Nordin A (2013) The impact of simulated chronic nitrogen deposition on the biomass and N2-fixation activity of two boreal feather moss-cyanobacteria associations. Biol Lett 9:20130797

    Article  Google Scholar 

  • Halvorson JJ, Franz EH, Smith JL, Black RA (1992) Nitrogenase activity, nitrogen fixation, and nitrogen inputs by lupines at Mount St. Helens. Ecology 73:87–98

    Article  Google Scholar 

  • Horstmann JL, Denison WC, Silvester WB (1982) 15N2 fixation and molybdenum enhancement of acetylene reduction by Lobaria spp. New Phytol 92:235–241

    Article  Google Scholar 

  • Jean ME, Phalyvong K, Forest-Drolet J, Bellenger JP (2013) Molybdenum and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern Canada: influence of vegetative cover and seasonal variability. Soil Biol Biochem 67:140–146

    Article  Google Scholar 

  • Lagestrom A, Nilsson MC, Zackrisson O, Wardle DA (2007) Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Funct Ecol 21:1027–1033

    Article  Google Scholar 

  • Marino R, Howarth RW, Chan F, Cole JJ, Likens GE (2003) Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under seawater conditions: a non-reversible effect. Hydrobiologia 500:277–293

    Article  Google Scholar 

  • Marks JA, Pett-Ridge JC, Perakis SS, Allen J, McCune B (2015) Response of the nitrogen-fixing lichen Lobaria pulmonaria to phosphorus, molybdenum, and vanadium. Ecosphere 6:155

    Article  Google Scholar 

  • Menge DNL, Hedin LO (2009) Nitrogen fixation in different biogeochemical niches along a 120 000-year chronosequence in New Zealand. Ecology 90:2190–2201

    Article  Google Scholar 

  • Myrold DD, Ruess RR, Klug MJ (1999) Dinitrogen fixation. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long term ecological research. Oxford University Press, New York, pp 241–257

    Google Scholar 

  • Oremland RS, Capone DG (1988) Use of specific inhibitors in biogeochemistry and microbial ecology. Adv Microb Ecol 10:285–383

    Article  Google Scholar 

  • Park M, Lee H, Hong SG, Kim OS (2013) Endophytic bacterial diversity of an Antarctic moss, Saniona unciniata. Antarct Sci 25:51–54

    Article  Google Scholar 

  • Park CH, Kim KM, Elvebakk A, Kim OS, Jeong G, Hong SG (2015) Algal and fungal diversity in Antarctic lichens. J Eukaryot Microbiol 62:196–205

    Article  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, USA

    Google Scholar 

  • Pérez CA, Carmona MR, Aravena JC, Armesto JJ (2004) Successional changes in soil nitrogen availability, non symbiotic nitrogen fixation and C/N ratios in southern Chilean forest ecosystems. Oecologia 140:617–625

    Article  Google Scholar 

  • Pérez SE, Pérez CA, Carmona MR, Fariña JM, Armesto JJ (2008) Efectos del fósforo y carbono lábiles en la fijación no-simbiótica del N2 de bosques siempreverdes manejados y no manejados de la Isla de Chiloé, Chile. Revista Chilena de Historia Natural 81:267–278

    Article  Google Scholar 

  • Pérez CA, Carmona MR, Fariña JM, Armesto JJ (2009a) Selective logging of lowland evergreen rainforests in Chiloé Island, Chile: effects of changing tree species composition on soil nitrogen transformations. For Ecol Manage 258:1660–1668

    Article  Google Scholar 

  • Pérez CA, Carmona MR, Aravena JC, Fariña JM, Armesto JJ (2009b) Environmental controls and patterns of cumulative radial increment of evergreen tree species in montane, temperate rainforests of Chiloé Island, southern Chile. Austral Ecol 34:259–271

    Article  Google Scholar 

  • Pérez CA, Aravena JC, Silva WA, Henríquez JM, Fariña JM, Armesto JJ (2014a) Ecosystem development in short-term postglacial chronosequences: N and P limitation in glacier forelands from Santa Inés Island, Magellan Strait. Austral Ecol 39:288–303

    Article  Google Scholar 

  • Pérez CA, Thomas FM, Silva WA, Segura B, Gallardo B, Armesto JJ (2014b) Patterns of biological nitrogen fixation during 60.000 years of forest development on volcanic soils from south-central Chile. N Z J Ecol 38(2):189–200

    Google Scholar 

  • Pérez CA, Aravena JC, Silva WA, McCulloch R, Armesto JJ, Parfitt R (2016) Patterns of ecosystem development in glacial foreland chronosequences: a comparative analysis of Chile and New Zealand. NZ J Bot 54:156–174

    Article  Google Scholar 

  • Quintana JMP, Aceituno P (2012) Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30°–43° S. Atmósfera 25:1–22

    Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2007) Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests. Biotropica 39:585–592

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Syst 42:489–512

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2013) Relationship among phosphorus, molybdenum and free living nitrogen fixation in tropical rainforests: results from observational and experimental analysis. Biogeochemistry 114:135–147

    Article  Google Scholar 

  • Riederer-Henderson MA, Wilson PW (1970) Nitrogen fixation by sulphate-reducing bacteria. J Gen Microbiol 61:27–31

    Article  Google Scholar 

  • Rousk K, Jones DL, DeLuca TH (2013) Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Front Microbiol 4:150

    Article  Google Scholar 

  • Silvester WB (1989) Molybdenum limitation of asymbiotic nitrogen fixation in forests of the Pacific Northwest America. Soil Biol Biochem 21:283–289

    Article  Google Scholar 

  • Steubing L, Fangmeier A (1992) Pflanzenökologisches Praktikum. Ulmer, Stuttgart

    Google Scholar 

  • Sullivan GM, Feinn R (2012) Using effect size-or why the P value is not enough. J Grad Med Educ. doi:10.4300/JGME-D-12-00156.1

    Google Scholar 

  • Vet R, Artz RA, Carou S, Shaw M, Ro CU, Aas W, Baker A, Bowersox VC, Dentener F, Galy-Lacaux C et al (2014) A global assesment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos Environ 93:3–100

    Article  Google Scholar 

  • Vile MA, Kelman Wieder R, Zivkovic T, Scott K, Vitt DH, Hartsock JA, Iosue CL, Quinn JC, Petix M, Fillingim HP et al (2014) N2-fixation by methanotrophs sustain carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry 121:317–328

    Article  Google Scholar 

  • Vistoso E (2005) Factores que influencia la dinámica del molibdeno en el sistema suelo-planta en Andisoles del sur de Chile. Ph D Thesis, Universidad de la Frontera, Temuco, Chile

  • Vistoso E, Theng BKG, Bolan NS, Parfitt RL, Mora ML (2012) Competitive sorption of molybdate and phosphate in Andisols. J Soil Sci Plant Nutr 12:59–72

    Article  Google Scholar 

  • Vitousek PM, Hobbie S (2000) Heterotrophic nitrogen fixation in decomposing litter: patterns and regulation. Ecology 81:2366–2376

    Article  Google Scholar 

  • Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Walter C, Pérez CA, Thomas FM (2016) Weather or weathering? Growth of Nothofagus dombeyi on volcanic soils differing in nitrogen and phosphorus concentrations. J Plant Ecol 9:596–607

    Article  Google Scholar 

  • Wurzburger N, Bellenger JP, Kraepiel AML, Hedin LO (2012) Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PLoS ONE 7(3):e33710. doi:10.1371/journal.pone.0033710

    Article  Google Scholar 

  • Yelenik S, Perakis S, Hibbs D (2013) Regional constraints to biological nitrogen fixation in post-fire communities. Ecology 94:739–750

    Article  Google Scholar 

  • Zackrisson O, De Luca TH, Nilsson MC, Sellstadt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–3334

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of Fondo Nacional de Ciencia y Tecnología (Fondecyt) Grant No. 1130353 and Grant IAI-CRN 3005. Corporación Nacional Forestal (CONAF) under the agreement 07/2012/IX allowed us to access Conguillío National Park, Araucarian Region, Chile. JJA, CP, and WS acknowledge the support of Grants PFB-23 (from Conicyt) and P05-002 (from Millennium Scientific Initiative) to the Institute of Ecology and Biodiversity, Chile. We are grateful to two anonymous reviewers and associated editor who greatly helped to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia A. Pérez.

Additional information

Responsible Editor: Steven Perakis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, C.A., Thomas, F.M., Silva, W.A. et al. Biological nitrogen fixation in a post-volcanic chronosequence from south-central Chile. Biogeochemistry 132, 23–36 (2017). https://doi.org/10.1007/s10533-016-0285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0285-6

Keywords

Navigation