Skip to main content

Advertisement

Log in

Temporal dynamics of bio-available Si fluxes in a temperate forested catchment (Meerdaal forest, Belgium)

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Silicon (Si) is a key element in global biogeochemical cycling and recent research has shown that changes in the biological component of the Si cycle may lead to more rapid variations in the land–ocean Si transfer than previously thought. The objective of this paper is to better understand the controls on temporal Si dynamics in terrestrial ecosystems, by studying Si fluxes from a small forested catchment in central Belgium. An intensive monitoring program (2008–2010) of dissolved and amorphous silica (DSi and ASi) concentrations and load patterns show that DSi concentrations are significantly lower during winter–spring periods than during summer–autumn periods. In contrast to what was found in other studies, seasonal dynamics in Meerdaal forest are not controlled by variations in biological uptake or temperature, but mainly by the more important supply of pore-water to the groundwater table in winter–spring periods. Analysis of seasonal and event fluctuations in stream water DSi concentrations showed that final stream water is a mixture of old, DSi rich water pushed out of the soil, and new, DSi poor water delivered by quick flow. The mixing of old and new water finally resulted in streamwater DSi concentrations responding only moderately to variations in discharge (near-chemostatic behaviour). We estimated the total DSi export from the system to be ca. 65.1 × 103 mol km−2 year−1. Because Si delivery is biologically regulated through an important Si cycle in the vegetation-soil continuum, an anthropogenic (e.g. agricultural expansion) or climatic disturbance of terrestrial ecosystems may alter both water residence times through shifts in hydrological regimes and the DSi chemical equilibrium concentration in soils. In turn, these perturbations will potentially alter long-term DSi and ASi inputs to aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Admiraal W, Breugem P, Jacobs DMLHA, Steveninck ED (1990) Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower river Rhine during diatom blooms. Biogeochemistry 9(2):175–185. doi:10.1007/bf00692170

    Article  Google Scholar 

  • Baeyens L, Tavernier R, Scheys G (1957) Belgian Soil Map, Sheet 103E (Hamme-Mille). Belgium

  • Berner RA, Rao JL, Chang S, O’Brien R, Keller CK (1998) Seasonal variability of adsorption and exchange equilibria in soil waters. Aquat Geochem 4(2):273–290. doi:10.1023/a:1009680430757

    Article  Google Scholar 

  • Beven K, Germann P (1982) Macropores and water flow in soils. Water Resour Res 18(5):1311–1325. doi:10.1029/WR018i005p01311

    Article  Google Scholar 

  • Booltink HWG, Bouma J (1991) Physical and morphological characterization of bypass flow in a well-structured clay soil. Soil Sci Soc Am J 55(5):1249–1254

    Article  Google Scholar 

  • Brzezinski MA (1985) The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21(3):347–357. doi:10.1111/j.0022-3646.1985.00347.x

    Article  Google Scholar 

  • Burt TP, Donohoe MA, Vann AR (1983) The effect of forestry drainage operations on upland sediment yields: the results of a storm-based study. Earth Surf Proc Land 8(4):339–346. doi:10.1002/esp.3290080406

    Article  Google Scholar 

  • Carey JC, Fulweiler RW (2011) Human activities directly alter watershed dissolved silica fluxes. Biogeochemistry. doi:10.1007/s10533-011-9671-2

    Google Scholar 

  • Clow DW, Mast MA (2010) Mechanisms for chemostatic behavior in catchments: implications for CO2 consumption by mineral weathering. Chem Geol 269(1–2):40–51. doi:10.1016/j.chemgeo.2009.09.014

    Article  Google Scholar 

  • Clymans W, Govers G, Van Wesemael B, Meire P, Struyf E (2011a) Amorphous silica analysis in terrestrial runoff samples. Geoderma 167(68):228–235. doi:10.1016/j.geoderma.2011.07.033

    Article  Google Scholar 

  • Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011b) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences 8(8):2281–2293. doi:10.5194/bg-8-2281-2011

    Article  Google Scholar 

  • Colman SM, Bratton JF (2003) Anthropogenically induced changes in sediment and biogenic silica fluxes in Chesapeake Bay. Geology 31(1):71–74. doi:10.1130/0091-7613(2003)031<0071:aicisa>2.0.co;2

    Article  Google Scholar 

  • Conley D (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16(4):1121. doi:10.1029/2002gb001894

    Google Scholar 

  • Cornelis JT, Ranger J, Iserentant A, Delvaux B (2010) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry 97(2):231–245. doi:10.1007/s10533-009-9369-x

    Article  Google Scholar 

  • Cornelis JT, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8:89–112

    Article  Google Scholar 

  • Derry L, Kurtz A, Ziegler K, Chadwick O (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433(7027):728–731

    Article  Google Scholar 

  • Dugdale R, Wilkerson F, Minas H (1995) The role of a silicate pump in driving new production. Deep Sea Res Part I 42(5):697–719

    Article  Google Scholar 

  • Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J Inorg Biochem 69(3):139–144

    Article  Google Scholar 

  • Fraysse F, Pokrovsky OS, Meunier JD (2010) Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochim Cosmochim Acta 74(1):70–84

    Article  Google Scholar 

  • Fulweiler RW, Nixon SW (2005) Terrestrial vegetation and the seasonal cycle of dissolved silica in a southern New England coastal river. Biogeochemistry 74(1):115–130. doi:10.1007/s10533-004-2947-z

    Article  Google Scholar 

  • Gaillardet J, Dupre B, Allegre CJ (1999) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63(23–24):4037–4051. doi:10.1016/s0016-7037(99)00307-5

    Article  Google Scholar 

  • Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and chlorophyceae in the drainage network of the Seibe river—observations and modeling. Limnol Oceanogr 40(4):750–765

    Article  Google Scholar 

  • Gérard F, François M, Ranger J (2002) Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhone, France). Geoderma 107(3–4):197–226

    Article  Google Scholar 

  • Gérard F, Ranger J, Menetrier C, Bonnaud P (2003) Silicate weathering mechanisms determined using soil solutions held at high matric potential. Chem Geol 202(3–4):443–460. doi:10.1016/j.chemgeo.2002.12.001

    Article  Google Scholar 

  • Gérard F, Mayer K, Hodson M, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72(3):741–758

    Article  Google Scholar 

  • Germann P, Beven K (1981) Water flow in soil macropores. I. An experimental approach. J Soil Sci 32(1):1–13. doi:10.1111/j.1365-2389.1981.tb01681.x

    Article  Google Scholar 

  • Godsey SE, Kirchner JW, Clow DW (2009) Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrol Process 23(13):1844–1864. doi:10.1002/hyp.7315

    Article  Google Scholar 

  • Harrison JA, Frings PJ, Beusen AHW, Conley DJ, McCrackin ML (2012) Global importance, patterns, and controls of dissolved silica retention in lakes and reservoirs. Global Biogeochem Cycles 26(2):GB2037. doi:10.1029/2011gb004228

    Google Scholar 

  • Hornberger G, Scanlon T, Raffensperger J (2001) Modelling transport of dissolved silica in a forested headwater catchment: the effect of hydrological and chemical time scales on hysteresis in the concentration-discharge relationship. Hydrol Process 15(10):2029–2038

    Article  Google Scholar 

  • Hughes HJ, Sondag F, Cocquyt C, Laraque A, Pandi A, Andre L, Cardinal D (2011) Effect of seasonal biogenic silica variations on dissolved silicon fluxes and isotopic signatures in the Congo River. Limnol Oceanogr 56(2):551–561. doi:10.4319/lo.2011.56.2.0551

    Article  Google Scholar 

  • Kennedy VC, Kendall C, Zellweger GW, Wyerman TA, Avanzino RJ (1986) Determination of the components of stormflow using water chemistry and environmental isotopes, Mattole River basin, California. J Hydrol 84(1–2):107–140

    Article  Google Scholar 

  • Klein M (1984) Anti-clockwise hysteresis in suspended sediment concentration during individual storms: Holbeck catchment. Catena 11:251–257

    Google Scholar 

  • Koning E, Epping E, Van Raaphorst W (2002) Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions. Aquat Geochem 8(1):37–67

    Article  Google Scholar 

  • Kurtz AC, Lugolobi F, Salvucci G (2011) Germanium-silicon as a flow path tracer: application to the Rio Icacos watershed. Water Resour Res 47:16. doi:10.1029/2010wr009853

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  Google Scholar 

  • Maher K (2011) The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes. Earth Planet Sci Lett 312(1–2):48–58. doi:10.1016/j.epsl.2011.09.040

    Article  Google Scholar 

  • Maulé CP, Stein J (1990) Hydrologic flow path definition and partitioning of spring meltwater. Water Resour Res 26(12):2959–2970

    Google Scholar 

  • McDonnell JJ (1990) Rationale for old water discharge through macropores in a steep, Humid Catchment. Water Resour Res 26(11):2821–2832

    Article  Google Scholar 

  • Meyus Y, Adyns D, Woldeamlak ST, Batelaan O, and De Smedt F (2004) Opbouw van een Vlaams Grondwatervoedingsmodel:Eindrapport. AMINAL, afdeling Water, p 81

  • Milliman JD, Syvitski JPM (1992) Geomorphic tectonic control of sediment discharge to the ocean—the importance of small mountainous rivers. J Geol 100(5):525–544

    Article  Google Scholar 

  • Mulholland P, Wilson G, Jardine P (1990) Hydrogeochemical response of a forested watershed to storms: effects of preferential flow along shallow and deep pathways. Water Resour Res 26(12):3021–3036

    Article  Google Scholar 

  • Naiman RJ (1982) Characteristics of sediment and organic carbon export from pristine boreal forest watersheds. Can J Fish Aquat Sci 39(12):1699–1718. doi:10.1139/f82-226

    Article  Google Scholar 

  • Neal C, Fisher R, Smith C, Hill S, Neal M, Conway T, Ryland G, Jeffrey H (1992) The effect of tree harvesting on stream-water quality at an acidic and acid-sensitive spruce forested area—Plynlimon, Mid-Wales. J Hydrol 135(1–4):305–319

    Article  Google Scholar 

  • Neal C, Neal M, Reynolds B, Maberly SC, May L, Ferrier RC, Smith J, Parker JE (2005) Silicon concentrations in UK surface waters. J Hydrol 304(1–4):75–93

    Article  Google Scholar 

  • Pearce AJ (1986) Storm runoff generation in humid headwater catchments.:1. Where does the water come from? Water Resour Res 22(8):1263

    Article  Google Scholar 

  • Peeters L (2010) Groundwater and geochemical modelling of the unconfined brussels aquifer. Leuven University, Faculty of Science, Belgium

    Google Scholar 

  • Ragueneau O, Treguer P (1994) Determination of biogenic silica in coastal waters—applicability and limits of the alkaline digestion method. Mar Chem 45(1–2):43–51

    Article  Google Scholar 

  • Saccone L, Conley D, Sauer D (2006) Methodologies for amorphous silica analysis. J Geochem Explor 88(1–3):235–238

    Article  Google Scholar 

  • Scanlon TM, Raffensperger JP, Hornberger GM (2001) Modeling transport of dissolved silica in a forested headwater catchment: implications for defining the hydrochemical response of observed flow pathways. Water Resour Res 37(4):1071–1082. doi:10.1029/2000wr900278

    Article  Google Scholar 

  • Sferratore A, Billen G, Garnier J, Smedberg E, Humborg C, Rahm L (2008) Modelling nutrient fluxes from sub-arctic basins: comparison of pristine vs. dammed rivers. J Mar Syst 73(3–4):236–249. doi:10.1016/j.jmarsys.2007.10.012

    Article  Google Scholar 

  • Sidle RC, Noguchi S, Tsuboyama Y, Laursen K (2001) A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization. Hydrol Process 15(10):1675–1692. doi:10.1002/hyp.233

    Article  Google Scholar 

  • Smis A, Van Damme S, Struyf E, Clymans W, van Wesemael B, Frot E, Vandevenne F, Van Hoestenberghe T, Govers G, Meire P (2010) A trade-off between dissolved and amorphous silica transport during peak-flow events (Scheldt river basin, Belgium): impacts of precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments. Biogeochemistry. doi:10.1007/s10533-010-9527-1

    Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169(3):310–329

    Article  Google Scholar 

  • Struyf E, Conley D (2011) Emerging understanding of the ecosystem silica filter. Biogeochemistry. doi:10.1007/s10533-011-9590-2

    Google Scholar 

  • Struyf E, Smis A, Van Damme S, Garnier J, Govers G, Van Wesemael B, Conley DJ, Batelaan O, Frot E, Clymans W, Vandevenne F, Lancelot C, Goos P, Meire P (2010) Historical land use change has lowered terrestrial silica mobilization. Nat Commun 1(8):129

    Article  Google Scholar 

  • Tréguer P, Nelson D, Vanbennekom A, DeMaster D, Leynaert A, Queguiner B (1995) The silica balance in the world ocean—a reestimate. Science 268(5209):375–379

    Article  Google Scholar 

  • Triplett LD (2008) Silica fluxes and trapping in two contrasting natural impoundments of the upper Mississippi River. Biogeochemistry 87(3):217

    Article  Google Scholar 

  • Van Cappellen P (2003) Biomineralization and global biogeochemical cycles. Rev Mineral Geochem 54:357–381

    Article  Google Scholar 

  • van Zon HJM (1980) The transport of leaves and sediment over a forest floor: a case study in the Grand Duchy of Luxembourg. Catena 7(2–3):97–110

    Google Scholar 

  • Vanwalleghem T, Verheyen K, Hermy M, Poesen J, Deckers J (2004) Legacies of roman land-use in the present-day vegetation in Meerdaal Forest (Belgium)? Belgian J Bot 137(2):181–187

    Google Scholar 

  • Wall GR, Phillips PJ, Riva-Murray K (1998) Seasonal and spatial patterns of nitrate and silica concentrations in Canajoharie Creek, New York. J Environ Qual 27(2):381–389

    Article  Google Scholar 

  • Watteau F, Villemin G (2001) Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. Eur J Soil Sci 52(3):385–396

    Article  Google Scholar 

  • Wels C, Cornett RJ, Lazerte BD (1991) Hydrograph separation—a comparison of geochemical and isotopic tracers. J Hydrol 122(1–4):253–274

    Article  Google Scholar 

Download references

Acknowledgments

The following persons are thanked for their invaluable assistance: Agentschap voor Natuur and Bos for consenting to fieldwork in Meerdaal forest, M. De Bie for providing a location to install the pluviometer, M. Ayyad, J. Meersmans, S. Vandevelde (KULeuven) and M. Bravin (UCLouvain) for equipment maintenance, data and sample collection, L. Fondu (KULeuven) for organic carbon analysis and ASi pre-treatment, A.Cools and T. Van der Spiet (ECOBE laboratory) for ASi and DSi analysis and P. Frings for English grammar support. Wim Clymans would like to thank the Flemish Agency for the promotion of Innovation by Science and Technology (IWT) for funding his personal PhD grant. Eric Struyf acknowledges the Research Foundation Flanders (FWO) for funding his postdoctoral grant. We acknowledge the Belgian Science Policy (BELSPO, SD/NS/05a) for funding the project “LUSi: land use changes and silica fluxes in the Scheldt river basin” and FWO for funding project “Tracking the biological control on Si mobilization in upland ecosystems” (Project no. G014609N). Finally, this manuscript has been substantially improved thanks to the constructive comments and suggestions of two anonymous reviewers: their help is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Clymans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clymans, W., Govers, G., Frot, E. et al. Temporal dynamics of bio-available Si fluxes in a temperate forested catchment (Meerdaal forest, Belgium). Biogeochemistry 116, 275–291 (2013). https://doi.org/10.1007/s10533-013-9858-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-013-9858-9

Keywords

Navigation