Skip to main content
Log in

Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian Rivers

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Current estimates of CO2 outgassing from Amazonian rivers and streams have considerable uncertainty since they are based on limited-time surveys of pCO2 measurements along the Amazon mainstem and mouths of major tributaries, using conservative estimates of gas exchange velocities. In order to refine basin-scale CO2 efflux estimates from Amazonian rivers, we present a long time (5-year) dataset of direct measurements of CO2 fluxes, gas transfer velocities and pCO2 measurements in seven representative rivers of the lowland Amazon basin fluvial network, six non-tidal (Negro, Solimões, Teles Pires, Cristalino, Araguaia and Javaés) and one tidal river (Caxiuanã), with sizes ranging from 4th to 9th order. Surveys were conducted from January 2006 to December 2010, in a total of 389 campaigns covering all stages of their hydrographs. CO2 fluxes and gas transfer velocities (k) were measured using floating chambers and pCO2 was measured simultaneously by headspace extraction followed by gas chromatography analysis. Results show high CO2 flux rate variability among rivers and hydrograph stages, ranging from −0.8 to 15.3 μmol CO2 m−2 s−1, with unexpected negative fluxes in clear-water rivers during low waters. Non-tidal rivers showed marked seasonal CO2 flux patterns, with significantly higher exchange during high waters. Seasonality was modulated by pCO2, which was positive and strongly correlated with discharge. In these rivers k was well correlated with wind speed, which allowed the use of wind data to model k. We estimate a release of 360 ± 60 Tg C year−1 from Amazonian rivers and streams within a 1.47 million km2 quadrant in the central lowland Amazon. Extrapolating these values to the basin upstream of Óbidos, results in an outgassing of 0.8 Pg C to the atmosphere each year. Our results are a step forward in achieving more accurate gas emission values for Amazonian rivers and their role in the annual carbon budget of the Amazon basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alin SR, Rasera MFFL, Salimon CI, Richey JE, Holtgrieve GW, Krusche AV, Snidvongs A (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res Biogeosci 116:G01009. doi:10.1029/2010jg001398

    Google Scholar 

  • Aufdenkampe AK, Hedges JI, Richey JE, Krusche AV, Llerena CA (2001) Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin. Limnol Oceanogr 46(8):1921–1935

    Article  Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aslto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9(1): 53–60. doi:10.1890/100014

    Google Scholar 

  • Batjes NH (2008) ISRIC-WISE Harmonized Global Soil Profile Dataset (ver. 3.1). In: Report 2008/02. ISRIC-World Soil information, Wageningen, www.iris.org. Accessed 11 Jan 2012

  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1(2):95–100

    Article  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598–600

    Article  Google Scholar 

  • Borges AV, Delille B, Schiettecatte LS, Gazeau F, Abril G, Frankignoulle M (2004a) Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol Oceanogr 49(5):1630–1641

    Article  Google Scholar 

  • Borges AV, Vanderborght JP, Schiettecatte LS, Gazeau F, Ferron-Smith S, Delille B, Frankignoulle M (2004b) Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries 27(4):593–603

    Article  Google Scholar 

  • Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842

    Article  Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. PNAS 104(47):18866–18870

    Article  Google Scholar 

  • Clark JF, Wanninkhof R, Schlosser P, Simpson HJ (1994) Gas-exchange rates in the tidal Hudson river using a dual tracer technique. Tellus Ser B Chem Phys Meteorol 46(4):274–285

    Article  Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52(1):101–110

    Article  Google Scholar 

  • Cooper M, Mendes LMS, Silva WLC, Sparovek G (2005) A national soil profile database for Brazil available to international scientists. Soil Sci Soc Am J 69(3):649–652

    Article  Google Scholar 

  • Devol AH, Quay PD, Richey JE, Martinelli LA (1987) The role of gas-exchange in the inorganic carbon, oxygen, and Rn-222 budgets of the Amazon River. Limnol Oceanogr 32(1):235–248

    Article  Google Scholar 

  • Devol AH, Forsberg BR, Richey JE, Pimentel TP (1995) Seasonal variation in chemical distributions in the Amazon (Solimoes) River—a multiyear time-series. Global Biogeochem Cycle 9(3):307–328

    Article  Google Scholar 

  • Ellis EE, Richey JE, Aufdenkampe AK, Krusche AV, Quay PD, Salimon C, da Cunha HB (2012) Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin. Limnol Oceanogr 57(2):527–540

    Article  Google Scholar 

  • Elsinger RJ, Moore WS (1983) Gas-exchange in the Pee-Dee River based on Rn-222 evasion. Geophys Res Lett 10(6):443–446

    Article  Google Scholar 

  • Engle DL, Melack JM, Doyle RD, Fisher TR (2008) High rates of net primary production and turnover of floating grasses on the Amazon floodplain: implications for aquatic respiration and regional CO2 flux. Glob Change Biol 14(2):369–381

    Article  Google Scholar 

  • Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, DeLille B, Libert E, Theate JM (1998) Carbon dioxide emission from European estuaries. Science 282(5388):434–436

    Article  Google Scholar 

  • Guerin F, Abril G, Serca D, Delon C, Richard S, Delmas R, Tremblay A, Varfalvy L (2007) Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J Marine Syst 66(1–4):161–172

    Article  Google Scholar 

  • Hess LL, Melack JM, Novo E, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ 87(4):404–428

    Article  Google Scholar 

  • Hesslein RH, Rudd JWM, Kelly C, Ramlal P, Hallard KA (1991) Carbon-dioxide pressure in surface waters of canadian lakes. Air–Water Mass Transfer: Selected Papers from the Second International Symposium on Gas Transfer at Water Surfaces, 413–431

  • Hida N, Maia JG, Hiraoka M, Shimmi O, Mizutani N (1997) Notes on annual and daily water level changes at Breves and Caxiuanã, Amazon Estuary. In: Lisboa PLB (ed) Caxiuanã. Museu Paraense Emilio Goeldi, Belém, pp 97–103

    Google Scholar 

  • Ho DT, Bliven LF, Wanninkhof R, Schlosser P (1997) The effect of rain on air-water gas exchange. Tellus Ser B Chem Phys Meteorol 49(2):149–158

    Article  Google Scholar 

  • Ho DT, Schlosser P, Caplow T (2002) Determination of longitudinal dispersion coefficient and net advection in the tidal Hudson River with a large-scale, high resolution SF6 tracer release experiment. Environ Sci Technol 36(15):3234–3241

    Article  Google Scholar 

  • Ho DT, Veron F, Harrison E, Bliven LF, Scott N, McGillis WR (2007) The combined effect of rain and wind on air-water gas exchange: a feasibility study. J Marine Syst 66(1–4):150–160

    Article  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJC (2004) Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil–stream linkages. Hydrol Process 18:3255–3275

    Article  Google Scholar 

  • Humborg C, Morth CM, Sundbom M, Borg H, Blenckner T, Giesler R, Ittekkot V (2010) CO2 supersaturation along the aquatic conduit in Swedish wathersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob Change Biol 16:1966–1978

    Article  Google Scholar 

  • Johnson MS, Lehmann J, Couto EG, Novaes JP, Riha SJ (2006) DOC and DIC in flowpaths of Amazonian headwater catchments with hydrologically contrasting soils. Biogeochemistry 81(1):45–57

    Article  Google Scholar 

  • Johnson MS, Lehmann J, Riha SJ, Krusche AV, Richey JE, Ometto J, Couto EG (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35(17):L17401. doi:17410.11029/12008gl034619

    Article  Google Scholar 

  • Koné YJM, Abril G, Kouadio KN, Delille B, Borges AV (2009) Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa). Estuar Coast 32:246–260

    Article  Google Scholar 

  • Kothandaraman V (1971) Effects of contaminants on reparation rates in river water. Water Pollut Control Fed 43:806–817

    Google Scholar 

  • Kremer JN, Reischauer A, D’Avanzo C (2003) Estuary-specific variation in the air-water gas exchange coefficient for oxygen. Estuaries 26(4A):829–836

    Article  Google Scholar 

  • Liebman B, Marengo JA (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J Clim 14(22):4308–4318

    Article  Google Scholar 

  • MacIntyre S, Wanninkhof R, Chanton JP (1995) Trace gas exchange across air-water inteface in freshwater and coastal marine environments. In: Matson PA, Harris RC (eds) Biogenic Trace Gases: Measuring Emissions from Soil and Water, Methods in Ecology. Blackwell Science Ltd, Cambridge, pp 52–97

    Google Scholar 

  • Marino R, Howarth RW (1993) Atmospheric oxygen-exchange in the Hudson River—dome measurements and comparison with other natural waters. Estuaries 16(3A):433–445

    Article  Google Scholar 

  • Martin O, Probst JL (1991) Biogeochemistry of major African rivers: carbon and mineral transport. In: Degens ET, Kempe S and Richey JE (eds) Biogeochemistry of major world rivers. SCOPE, vol 42. Wiley, Chichester, p 127–156

  • Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005a) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436(7050):538–541

    Article  Google Scholar 

  • Mayorga E, Logsdon MG, Ballester MVR, Richey JE (2005b) Estimating cell-to-cell land surface drainage paths from digital channel networks, with an application to the Amazon basin. J Hydrol 315(1–4):167–182

    Article  Google Scholar 

  • Melack JM, Forsberg BR (2001) Biogeochemistry of Amazon floodplain lakes and associated wetlands. In: McClain ME, Victoria RL, Richey JE (eds) The Biogeochemistry of the Amazon Basin and its role in a changing world. Oxford University Press, Oxford, pp 235–276

    Google Scholar 

  • Melack JM, Finzi AC, Siegel D, MacIntyre S, Nelson CE, Aufdenkampe AK, Pace ML (2011) Improving biogeochemical knowledge through technological innovation. Front Ecol Environ 9(1):37–43. doi:10.1890/100004

    Article  Google Scholar 

  • Nabout JC, Nogueira IS, Oliveira LG (2006) Phytoplankton community of floodplain lakes of the Araguaia River, Brazil, in the rainy and dry seasons. J Plankton Res 28(2):181–193

    Article  Google Scholar 

  • Oke TR (1988) Boundary Layer Climates. Routledge, Boca Raton

    Google Scholar 

  • Quay PD, Wilbur DO, Richey JE, Hedges JI, Devol AH, Victoria R (1992) Carbon cycling in the Amazon River—implications from the C-13 compositions of particles and solutes. Limnol Oceanogr 37(4):857–871

    Article  Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8(6):1415–1440

    Article  Google Scholar 

  • Rasera MFFL, Ballester MVR, Krusche AV, Salimon C, Montebelo LA, Alin SR, Victoria RL, Richey JE (2008) Estimating the surface area of small rivers in the southwestern Amazon and their role in CO2 outgassing. Earth Interact 12:1–16

    Article  Google Scholar 

  • Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24(2):312–317

    Article  Google Scholar 

  • Raymond PA, Caraco NF, Cole JJ (1997) Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20(2):381–390

    Article  Google Scholar 

  • Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr Fluids and Environ 2:41–53. doi:10.1215/21573689-1597669

    Article  Google Scholar 

  • Richey JE, Devol AH, Wofsy SC, Victoria R, Riberio MNG (1988) Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol Oceanogr 33(4):551–561

    Article  Google Scholar 

  • Richey JE, Hedges JI, Devol AH, Quay PD, Victoria R, Martinelli L, Forsberg BR (1990) Biogeochemistry of carbon in the Amazon River. Limnol Oceanogr 35(2):352–371

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416(6881):617–620

    Article  Google Scholar 

  • Richey JE, Krusche AV, Johnson MS, Cunha HB, Ballester MV (2009) The role of rivers in the regional carbon balance. In: Keller M, Bustamante M, Gash J, Dias PS (eds) Amazonia and global change. American Geophysical Union, Washington, pp 489–504

    Chapter  Google Scholar 

  • Sioli H (1950) Das wasser im Amazonasgebiet. Forsch Fortschr 26:274–280

    Google Scholar 

  • Sioli H (1984) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Junk, W, Dordrecht

  • Skirrow G (1975) The dissolved gases—carbon dioxide. In: Riley JP, Skirrow G (eds) Chemical oceanography. Academic Press, London, pp 1–192

    Google Scholar 

  • Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55(4):1723–1732

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind-speed and gas-exchange over the ocean. J Geophys Res Oceans 97(C5):7373–7382

    Article  Google Scholar 

  • Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in quantifying air–sea gas exchange and environmental forcing. Annu Rev Marine Sci 1:213–244

    Article  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chem 2:203–215

    Article  Google Scholar 

  • Wissmar RC, Richey JE, Stallard RF, Edmond JM (1981) Plankton metabolism and carbon processes in the Amazon River, its tributaries, and floodplain waters, Peru-Brazil, May–June 1977. Ecology 62(6):1622–1633

    Article  Google Scholar 

  • Yao GR, Gao QZ, Wang ZG, Huang XK, He T, Zhang YL, Jiao SL, Ding J (2007) Dynamics Of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci Total Environ 376(1–3):255–266

    Article  Google Scholar 

  • Zappa C, Raymond PA, Terray EA, McGillis WR (2003) Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26(6):1401–1415

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by FAPESP Grants 08/58089-9, 10/19091-8 and MCT through LBA, and NASA LBA (NCC5-345 and NCC5-689). We thank especially the members of the Rede Beija Rio sampling network, Kelly Munhoz (FAPEMAT, MT), Soraya Rodrigues da Silva (UFT, TO), Maria Emília Sales (MPEG, PA), Hilândia Brandão (INPA, AM), Alexandra Montebelo, and the numerous students and employees who helped in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Fátima F. L. Rasera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Fátima F. L. Rasera, M., Krusche, A.V., Richey, J.E. et al. Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian Rivers. Biogeochemistry 116, 241–259 (2013). https://doi.org/10.1007/s10533-013-9854-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-013-9854-0

Keywords

Navigation