Skip to main content

Advertisement

Log in

Dynamic controls on riverine pCO2 and CO2 outgassing in the Dry-hot Valley Region of Southwest China

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Inland waters frequently exhibit carbon dioxide (CO2) supersaturation and potentially serve as CO2 emitters to the atmosphere. However, study on water–air interface CO2 exchange from small rivers remains limited, which causes large uncertainty of local and global carbon budgets. Based on seasonal field measurements, carbonate equilibria (CO2SYS program) and empirical models of gas transfer velocity (k value), we investigated the CO2 partial pressure (pCO2), CO2 emission and its controlling factors in the Longchuan River, a subtropical river in the Dry-hot Valley Region of Southwest China. Over 88% of samples were found to be oversaturated with atmospheric CO2, and the mean pCO2 ranged from 1497 ± 1415 μatm (dry period) to 1734 ± 1648 μatm (post-wet period). With the calibrated k values of 43.4–80.5 cm/h, the CO2 emission rates were estimate at 443–514 mmol/m2/day. We highlighted that long-term gully erosion enhanced the buffering capacity of carbonates in the aquatic environment and resulted in seasonal differences in riverine pCO2. Intensive agricultural practices could alter the pCO2 and further stimulate CO2 emissions. There were positive correlations of pCO2-elevation and pCO2-DOC in the initial-wet period but not in the dry period. This study suggests that extreme soil erosion and anthropogenic activities can regulate environmental variables and thus greatly affect the riverine CO2 outgassing. Our findings provide key insights into the understandings of dynamic controls on riverine pCO2 and CO2 outgassing under global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aberg J, Wallin MB (2014) Evaluating a fast headspace method for measuring DIC and subsequent calculation of pCO2 in freshwater systems. Inland Waters 4:157–166

    Google Scholar 

  • Abril G, Bouillon S, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Omengo FO, Geeraert N, Deirmendjian L, Polsenaere P (2015) Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12:67–78

    CAS  Google Scholar 

  • Alekin OA, Semenov AD, Skopintsev BA (1973) Handbook of chemical analysis of land waters. Gidrometeoizdat, St. Petersburg, p 269

    Google Scholar 

  • Alin SR, Rasera MDFL, Salimon CI, Richey JE, Holtgrieve GW, Krusche AV, Snidvongs A (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res Biogeosci 116:248–255

    Google Scholar 

  • Almeida RM, Pacheco FS, Barros N, Rosi E, Roland F (2017) Extreme floods increase CO2 outgassing from a large Amazonian river. Limnol Oceanogr 62:989–999

    CAS  Google Scholar 

  • Al-Zu’bi Y (2007) Effect of irrigation water on agricultural soil in Jordan valley: an example from arid area conditions. J Arid Environ 70:63–79

    Google Scholar 

  • American Public Health Association (APHA) (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington, DC, p 1268

    Google Scholar 

  • Arneth A, Sitch S, Pongratz J, Stocker BD, Ciais P, Poulter B, Bayer AD, Bondeau A, Calle L, Chini LP, Gasser T, Fader M, Friedlingstein P, Kato E, Li W, Lindeskog M, Nabel JEMS, Pugh TAM, Robertson E, Viovy N, Yue C, Zaehle S (2017) Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat Geosci 10:79–84

    CAS  Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60

    Google Scholar 

  • Beaulieu JJ, Shuster WD, Rebholz JA (2012) Controls on gas transfer velocities in a large river. J Geophys Res Biogeosci 117

  • Bianchi TS, Garcia-Tigreros F, Yvon-Lewis SA, Shields M, Mills HJ, Butman D, Osburn C, Raymond P, Shank GC, DiMarco SF, Walker N, Reese BK, Mullins-Perry R, Quigg A, Aiken GR, Grossman EL (2013) Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event. Geophys Res Lett 40:116–122

    CAS  Google Scholar 

  • Billett MF, Garnett MH, Harvey F (2007) UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophys Res Lett 34:L23401

    Google Scholar 

  • Bolpagni R, Folegot S, Laini A, Bartoli M (2017) Role of ephemeral vegetation of emerging river bottoms in modulating CO2 exchanges across a temperate large lowland river stretch. Aquat Sci 79:149–158

    CAS  Google Scholar 

  • Bouchez J, Galy V, Hilton RG, Gaillardet J, Moreira-Turcq P, Perez MA, France-Lanord C, Maurice L (2014) Source, transport and fluxes of Amazon River particulate organic carbon: insights from river sediment depth-profiles. Geochim Cosmochim Ac 133:280–298

    CAS  Google Scholar 

  • Campeau A, Del Giorgio PA (2014) Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Glob Change Biol 20:1075–1088

    Google Scholar 

  • de Wit HA, Austnes K, Hylen G, Dalsgaard L (2015) A carbon balance of Norway: terrestrial and aquatic carbon fluxes. Biogeochemistry 123:147–173

    Google Scholar 

  • Duan X, Liu B, Gu Z, Rong L, Feng D (2016) Quantifying soil erosion effects on soil productivity in the dry-hot valley, southwestern China. Environ Earth Sci 75:1164

    Google Scholar 

  • Dubois KD, Lee D, Veizer J (2010) Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River. J Geophys Res Biogeosci 115:G02018

    Google Scholar 

  • Finlay K, Leavitt PR, Wissel B, Prairie YT, Williamson CE, Saros JEG, Vincent WF, Smol JP (2009) Regulation of spatial and temporal variability of carbon flux in six hard-water lakes of the northern Great Plains. Limnol Oceanogr 54:2553–2564

    CAS  Google Scholar 

  • Garzon-Garcia A, Olley JM, Bunn SE, Moody P (2015) Gully erosion reduces carbon and nitrogen storage and mineralization fluxes in a headwater catchment of south-eastern Queensland, Australia. Hydrol Process 28:4669–4681

    Google Scholar 

  • Golub M, Desai AR, Mckinley GA, Remucal CK, Stanley EH (2017) Large uncertainty in estimating pCO2 from carbonate equilibria in lakes. J Geophys Res Biogeosci 122:2909–2924

    CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360

    Google Scholar 

  • Hasler CT, Butman D, Jeffrey JD, Suski CD (2016) Freshwater biota and rising pCO2? Ecol Lett 19:98–108

    PubMed  Google Scholar 

  • Hotchkiss ER, Hall RO, Sponseller RA, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J (2015) Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci 8:696–699

    CAS  Google Scholar 

  • Hotchkiss ER, Sadro S, Hanson PC (2018) Toward a more integrative perspective on carbon metabolism across lentic and lotic inland waters. Limnol Oceanogr Lett 3:57–63

    Google Scholar 

  • Huang WJ, Cai WJ, Castelao RM, Wang YC, Lohrenz SE (2013) Effects of a wind-driven cross-shelf large river plume on biological production and CO2 uptake on the Gulf of Mexico during spring. Limnol Oceanogr 58:1727–1735

    CAS  Google Scholar 

  • Hunt CW, Salisbury JE, Vandemark D (2011) Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers. Biogeosciences 8:3069–3076

    CAS  Google Scholar 

  • Ibanhez JSP, Diverres D, Araujo M, Lefevre N (2015) Seasonal and interannual variability of sea-air CO2 fluxes in the tropical Atlantic affected by the Amazon River plume. Glob Biogeochem Cycles 29:1640–1655

    CAS  Google Scholar 

  • Johnson MS, Lehmann J, Riha SJ, Krusche AV, Richey JE, Ometto JPHB, Couto EG (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35:L17401

    Google Scholar 

  • Jones JB, Mulholland PJ (1998) Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry 40:57–72

    CAS  Google Scholar 

  • Khadka MB, Martin JB, Jin J (2014) Transport of dissolved carbon and CO2 degassing from a river system in a mixed silicate and carbonate catchment. J Hydrol 517:1188

    Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48:1161–1172

    Google Scholar 

  • Lapierre JF, Giorgio PA (2015) Geographical and environmental drivers of regional differences in the lake pCO2 versus DOC relationship across northern landscapes. J Geophys Res Biogeosci 117:6841–6847

    Google Scholar 

  • Lapierre JF, Guillemette F, Berggren M, del Giorgio PA (2013) Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat Commun 4:2972

    PubMed  Google Scholar 

  • Larsen S, Andersen T, Hessen DO (2011) The pCO2 in boreal lakes: organic carbon as a universal predictor? Glob Biogeochem Cycles 25:GB2012

    Google Scholar 

  • Lauerwald R, Hartmann J, Moosdorf N, Kempe S, Raymond PA (2013) What controls the spatial patterns of the riverine carbonate system? A case study for North America. Chem Geol 337:114–127

    Google Scholar 

  • Lauerwald R, Laruelle GG, Hartmann J, Ciais P, Regnier PAG (2015) Spatial patterns in CO2 evasion from the global river network: spatial patter of riverine pCO2 and FCO2. Glob Biogeochem Cycles 29:534–554

    CAS  Google Scholar 

  • Li SY, Lu XX, He M, Zhou Y, Bei RT, Li L, Ziegler AD (2011) Major element chemistry in the upper Yangtze River: a case study of the Longchuanjiang River. Geomorphology 129:29–42

    Google Scholar 

  • Li SY, Lu XX, He M, Zhou Y, Li L, Ziegler AD (2012) Daily CO2 partial pressure and CO2 outgassing in the upper Yangtze River basin: a case study of the Longchuan River, China. J Hydrol 466:141–150

    Google Scholar 

  • Li SY, Lu XX, Bush RT (2013) CO2 partial pressure and CO2 emission in the Lower Mekong River. J Hydrol 504:40–56

    CAS  Google Scholar 

  • Li BQ, Yu ZB, Liang ZM, Acharya K (2014) Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Glob Planet Change 118:69–84

    Google Scholar 

  • Li SY, Ni MF, Mao R, Bush RT (2018a) Riverine CO2 supersaturation and outgassing in a subtropical monsoonal mountainous area (Three Gorges Reservoir Region) of China. J Hydrol 558:460–469

    CAS  Google Scholar 

  • Li TY, Li SY, Bush RT, Liang C (2018b) Extreme drought decouples silicon and carbon geochemical linkages in lakes. Sci Total Environ 634:1184–1191

    CAS  PubMed  Google Scholar 

  • Li S, Luo J, Wu D, Jun Xu Y(2020) Carbon and nutrients as indicators of daily fluctuations of pCO2 and CO2 flux in a river draining a rapidly urbanizing area. Ecol Indicat 109:105821

    CAS  Google Scholar 

  • Liu S, Lu XX, Xia X, Zhang S, Ran L, Yang X, Liu T (2016) Dynamic biogeochemical controls on river pCO2 and recent changes under aggravating river impoundment: an example of the subtropical Yangtze River. Glob Biogeochem Cycles 30:880–897

    CAS  Google Scholar 

  • Liu SD, Lu XX, Xia XH, Yang XK, Ran LS (2017) Hydrological and geomorphological control on CO2 outgassing from low-gradient large rivers: an example of the Yangtze River system. J Hydrol 550:26–41

    CAS  Google Scholar 

  • Lu XX, Li S, He M, Zhou Y, Bei R, Li L, Ziegler AD (2011) Seasonal changes of nutrient fluxes in the Upper Changjiang basin: an example of the Longchuanjiang River, China. J Hydrol 405:344–351

    CAS  Google Scholar 

  • Lynch JK, Beatty CM, Seidel MP, Jungst LJ, DeGrandpre MD (2010) Controls of riverine CO2 over an annual cycle determined using direct, high temporal resolution pCO2 measurements. J Geophys Res Biogeosci 115:3954–3963

    Google Scholar 

  • Maher W, Krikowa F, Wruck D, Louie H, Nguyen T, Huang WY (2002) Determination of total phosphorus and nitrogen in turbid waters by oxidation with alkaline potassium peroxodisulfate and low pressure microwave digestion, autoclave heating or the use of closed vessels in a hot water bath: comparison with Kjeldahl digestion. Anal Chim Acta 463:283–293

    CAS  Google Scholar 

  • Mao R, Li SY (2019) Temporal controls on dissolved organic carbon biodegradation in subtropical rivers: initial chemical composition versus stoichiometry. Sci Total Environ 651:3064–3069

    CAS  PubMed  Google Scholar 

  • Martin JB (2017) Carbonate minerals in the global carbon cycle. Chem Geol 449:58–72

    CAS  Google Scholar 

  • Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541

    CAS  PubMed  Google Scholar 

  • Mulder T, Syvitski JPM (1996) Climatic and morphologic relationships of rivers: implications of sea-level fluctuations on river loads. J Geol 104:509–523

    Google Scholar 

  • Ni MF, Li SY, Luo JC, Lu XX (2019) CO2 partial pressure and CO2 degassing in the Daning River of the upper Yangtze River, China. J Hydrol 569:483–494

    CAS  Google Scholar 

  • Nydahl AC, Wallin MB, Weyhenmeyer GA (2017) No long-term trends in pCO2 despite increasing organic carbon concentrations in boreal lakes, streams and rivers. Glob Biogeochem Cycles 31:985–995

    CAS  Google Scholar 

  • Oh NH, Raymond PA (2006) Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin. Glob Biogeochem Cycles 20:GB3012

    Google Scholar 

  • Oh NH, Pellerin BA, Bachand PAM, Hernes PJ, Bachand SM, Ohara N, Kavvas ML, Bergamaschi BA, Horwath WR (2013) The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed. Agric Ecosyst Environ 179:1–10

    CAS  Google Scholar 

  • Pu J, Li J, Khadka MB, Martin JB, Zhang T, Yu S, Yuan D (2016) In-stream metabolism and atmospheric carbon sequestration in a groundwater-fed karst stream. Sci Total Environ 579:1343

    PubMed  Google Scholar 

  • Ran L, Lu XX, Richey JE, Sun H, Han J, Yu R, Liao S, Yi Q (2015a) Long-term spatial and temporal variation of CO2 partial pressure in the Yellow River, China. Biogeosciences 12:921–932

    CAS  Google Scholar 

  • Ran LS, Lu XX, Yang H, Li LY, Yu RH, Sun HG, Han JT (2015b) CO2 outgassing from the Yellow River network and its implications for riverine carbon cycle. J Geophys Res Biogeosci 120:1334–1347

    CAS  Google Scholar 

  • Ran LS, Li LY, Tian MY, Yang XK, Yu RH, Zhao J, Wang LX, Lu XX (2017) Riverine CO2 emissions in the Wuding River catchment on the Loess Plateau: environmental controls and dam impoundment impact. J Geophys Res Biogeosci 122:1439–1455

    CAS  Google Scholar 

  • Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24:312–317

    CAS  Google Scholar 

  • Raymond PA, Bauer JE, Cole JJ (2000) Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnol Oceanogr 45:1707–1717

    CAS  Google Scholar 

  • Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, Mcdowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr Fluids Environ 2:41–53

    Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Durr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    CAS  PubMed  Google Scholar 

  • Redolfi M, Tubino M, Bertoldi W, Brasington J (2016) Analysis of reach-scale elevation distribution in braided rivers: definition of a new morphologic indicator and estimation of mean quantities. Water Resour Res 52:5951–5970

    Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    CAS  PubMed  Google Scholar 

  • Sobek S, Algesten G, Bergström AK, Jansson M, Tranvik LJ (2003) The catchment and climate regulation of pCO2 in boreal lakes. Glob Change Biol 9:630–641

    Google Scholar 

  • Sokolova IM, Lannig G (2008) Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim Res 37:181–201

    Google Scholar 

  • Sorribas MV, Marques DD, Castro NMD, Fan FM (2017) Fluvial carbon export and CO2 efflux in representative nested headwater catchments of the eastern La Plata River Basin. Hydrol Process 31:995–1006

    CAS  Google Scholar 

  • Tamooh F, Borges AV, Meysman FJR, Van den Meersche K, Dehairs F, Merckx R, Bouillon S (2013) Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River basin, Kenya. Biogeosciences 10:6911–6928

    CAS  Google Scholar 

  • Tanhua T, Wallace DWR (2005) Consistency of TTO-NAS inorganic carbon data with modern measurements. Geophys Res Lett 32:L14618

    Google Scholar 

  • Thomas J, Joseph S, Thrivikramji KP (2015) Hydrochemical variations of a tropical mountain river system in a rain shadow region of the southern Western Ghats, Kerala, India. Appl Geochem 63:456–471

    CAS  Google Scholar 

  • Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, da Silva JRM, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629

    PubMed  Google Scholar 

  • Varol M, Li SY (2017) Biotic and abiotic controls on CO2 partial pressure and CO2 emission in the Tigris River, Turkey. Chem Geol 449:182–193

    CAS  Google Scholar 

  • Wang FS, Wang YC, Zhang J, Xu H, Wei XG (2007) Human impact on the historical change of CO2 degassing flux in River Changjiang. Geochem Trans 8:277

    CAS  Google Scholar 

  • Wang XC, Ma HQ, Li RH, Song ZS, Wu JP (2012) Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: the Yellow River and Changjiang (Yangtze) River. Glob Biogeochem Cycles 26:GB2025

    Google Scholar 

  • Wang X, He Y, Yuan X, Chen H, Peng C, Zhu Q, Yue J, Ren H, Deng W, Liu H (2017) pCO2 and CO2 fluxes of the metropolitan river network in relation to the urbanization of Chongqing, China. J Geophys Res Biogeosci 122:470–486

    CAS  Google Scholar 

  • Wang YK, Rhoads BL, Wang D, Wu JC, Zhang X (2018) Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River. J Hydrol 558:184–195

    Google Scholar 

  • Wen ZD, Song KS, Shang YX, Fang C, Li L, Lv LL, Lv XG, Chen LJ (2017) Carbon dioxide emissions from lakes and reservoirs of China: a regional estimate based on the calculated pCO2. Atmos Environ 170:71–81

    CAS  Google Scholar 

  • Wit F, Muller D, Baum A, Warneke T, Pranowo WS, Muller M, Rixen T (2015) The impact of disturbed peatlands on river outgassing in Southeast Asia. Nat Commun 6:10155

    CAS  PubMed  Google Scholar 

  • Wu Y, Zhang J, Liu SM, Zhang ZF, Yao QZ, Hong GH, Cooper L (2007) Sources and distribution of carbon within the Yangtze River system. Estuar Coast Shelf Sci 71:13–25

    Google Scholar 

  • Yang D, Xiong DH, Guo M, Su ZG, Zhang BJ, Zheng XY, Zhang S, Fang HD (2015) Impact of grass belt position on the hydraulic properties of runoff in gully beds in the Yuanmou Dry-hot valley region of Southwest China. Phys Geogr 36:408–425

    Google Scholar 

  • Yang D, Xiong DH, Zhang BJ, Guo M, Su ZG, Dong YF, Zhang S, Xiao L, Lu XN (2017) Effect of grass basal diameter on hydraulic properties and sediment yield processes in gully beds in the dry-hot valley region of Southwest China. CATENA 152:299–310

    CAS  Google Scholar 

  • Yao GR, Gao QZ, Wang ZG, Huang XK, He T, Zhang YL, Jiao SL, Ding J (2007) Dynamics Of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci Total Environ 376:255–266

    CAS  PubMed  Google Scholar 

  • Zeng FW, Masiello CA (2010) Sources of CO2 evasion from two subtropical rivers in North America. Biogeochemistry 100:211–225

    CAS  Google Scholar 

  • Zeng FW, Masiello CA, Hockaday WC (2011) Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas. Biogeochemistry 104:275–291

    Google Scholar 

  • Zhang J, Yang Z, Wang D, Zhang X (2002) Climate change and causes in the Yuanmou dry-hot valley of Yunnan, China. J Arid Environ 51:153–162

    Google Scholar 

  • Zhang J, Li S, Dong R, Jiang C (2018) Physical evolution of the Three Gorges Reservoir using advanced SVM on Landsat images and SRTM DEM data. Environ Sci Pollut Res 25:14911–14918

    Google Scholar 

  • Zhang S, Lu XX, Sun H, Han J, Higgitt DL (2009) Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China. Sci Total Environ 407(8):2796–2807

    CAS  PubMed  Google Scholar 

  • Zhao CE (2014) The response of runoff on Climate Change and LUCC in the Longchuan River. Yunnan Normal University (In Chinese with English Abstract)

  • Zhong J (2007) Water quality pollution situation and its trend and countermeasure of water pollution in Longchuanjiang River. Environ Sci Surv 26:54–57 (In Chinese with English Abstract)

    Google Scholar 

  • Zhu YM, Lu X, Zhou Y (2007) Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology 84:111–125

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (NSFC Grant no. 31670473) and “the Hundred-Talent Program” of the Chinese Academy of Sciences (granted to Dr. Li). We thanked Dr. Rong Mao and Tianyang Li for their help in the field works. Special thanks are given to the editor in Chief, Prof. Stuart Findlay and two anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyue Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, M., Luo, J. & Li, S. Dynamic controls on riverine pCO2 and CO2 outgassing in the Dry-hot Valley Region of Southwest China. Aquat Sci 82, 12 (2020). https://doi.org/10.1007/s00027-019-0685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-019-0685-5

Keywords

Navigation