Skip to main content

Advertisement

Log in

Long-term analysis of Hubbard Brook stable oxygen isotope ratios of streamwater and precipitation sulfate

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In response to decreasing atmospheric emissions of sulfur (S) since the 1970s there has been a concomitant decrease in S deposition to watersheds in the Northeastern U.S. Previous study at the Hubbard Brook Experimental Forest, NH (USA) using chemical and isotopic analyzes (\( \delta^{34} {\text{S}}_{{{\text{SO}}_{4} }} \)) combined with modeling has suggested that there is an internal source of S within these watersheds that results in a net loss of S via sulfate in drainage waters. The current study expands these previous investigations by the utilization of δ18O analyzes of precipitation sulfate and streamwater sulfate. Archived stream and bulk precipitation samples at the Hubbard Brook Experimental Forest from 1968–2004 were analyzed for stable oxygen isotope ratios of sulfate (\( \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} \)). Overall decreasing temporal trends and seasonally low winter values of \( \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} \) in bulk precipitation are most likely attributed to similar trends in precipitation \( \delta^{18} {\text{O}}_{{{\text{H}}_{2} {\text{O}}}} \) values. Regional climate trends and changes in temperature control precipitation \( \delta^{18} {\text{O}}_{{{\text{H}}_{2} {\text{O}}}} \) values that are reflected in the \( \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} \) values of precipitation. The significant relationship between ambient temperature and the \( \delta^{18} {\text{O}}_{{{\text{H}}_{2} {\text{O}}}} \) values of precipitation is shown from a nearby site in Ottawa, Ontario (Canada). Although streamwater \( \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} \) values did not reveal temporal trends, a large difference between precipitation and streamwater \( \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} \) values suggest the importance of internal cycling of S especially through the large organic S pool and the concomitant effect on the \( \delta^{18} {\text{O}}_{{{\text{SO}}_{4} }} \) values in drainage waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANC:

Acid neutralizing capacity

CAA:

Clean air act of 1970

CAAAs:

Clean air act amendments of 1977 and 1990

CNIP:

Canadian network for isotopes in precipitation

GNIP:

Global network of isotopes in precipitation

HBEF:

Hubbard Brook Experimental Forest

IAEA:

International atomic energy agency

ISOHIS:

Isotope hydrology information system

OIPC:

Online isotopes in precipitation calculator

P:

Bulk precipitation/deposition

USGS:

U.S. geological survey

W6:

Streamwater

WISER:

Water isotope system for data analysis visualization and electronic retrieval

References

  • Alewell C, Mitchell MJ, Likens GE, Krouse HR (1999) Sources of stream sulfate at the Hubbard Brook experimental forest: long-term analyzes using stable isotopes. Biogeochemistry 44:281–299

    Google Scholar 

  • Alewell C, Mitchell MJ, Likens GE, Krouse HR (2000) Assessing the origin of sulfate deposition at the Hubbard Brook experimental forest. J Environ Qual 29:759–767

    Article  Google Scholar 

  • Bailey SW, Mayer B, Mitchell MJ (2004) Evidence for influence of mineral weathering on streamwater sulphate in Vermont and New Hampshire (USA) Hydrol. Process 18:1639–1653

    Google Scholar 

  • Baron JS, Allstott EJ, Newkirk BK (1995) Analysis of long-term sulfate and nitrate budgets in a Rocky Mountain basin. In: Biogeochemistry of seasonally snow-covered catchments. Proceedings of a Boulder Symposium, July 1995. IAHS Publ, p 228

  • Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39(10):1299. doi:10.129/2003WR002086

    Article  Google Scholar 

  • Bowen GJ, Wilkinson B (2002) Spatial distribution of δ18O in meteoric precipitation. Geology 30(4):315–318

    Article  Google Scholar 

  • Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348

    Article  Google Scholar 

  • Clair TA, Dillon PJ, Ion J, Jeffries DS, Papineau M, Vet R (1995) Regional precipitation and surface water chemistry trends in southeastern Canada (1983–1991). Can J Fish Aquat Sci 52:197–212

    Article  Google Scholar 

  • Dansgaard W (1964) Stable Isotopes in Precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dillon PJ, Molot LA, Futter M (1997) The effect of El Nino-related drought on the recovery of acidified lakes. Environ Monit Assess 46:105–111

    Article  Google Scholar 

  • Driscoll CT, Postek KM, Kretser W, Raynal DJ (1995) Long-term trends in the chemistry of precipitation and lake water in the Adirondack region of New York, USA. Water Air Soil Pollut 85:583–588

    Article  Google Scholar 

  • Driscoll CT, Likens GE, Church MR (1998) Recovery of surface waters in the Northeastern US from decreases in atmospheric deposition of sulfur. Water Air Soil Pollut 105:319–329

    Article  Google Scholar 

  • Dutton AL, Wilkinson BH, Welker JM, Lohmann KC (2005) Comparison of river water and precipitation δ18O across the 48 contiguous United States. Hydrol Process 19:3551–3572

    Article  Google Scholar 

  • Edwards PJ, Gregory JD, Allen HL (1999) Seasonal sulfate deposition and export patterns for a small Appalachian watershed. Water Air Soil Pollut 110:137–155

    Article  Google Scholar 

  • Energy Information Administration (2007) Official Energy Statistics from the U.S. Government. http://www.eia.doe.gov/fuelelectric.html. Accessed on 11 Sept 2007

  • Feichter J, Kjellstrom E, Rodhe H, Dentener F, Lelieveld J, Roelofs G (1996) Simulation of the tropospheric sulfur cycling in a global climate model. Atmos Environ 30:1693–1707

    Article  Google Scholar 

  • Gat JR (1997) The modification of the isotopic composition of meteoric waters at the land/biosphere-atmosphere interface. Isotope techniques in the study of past and current environmental changes in the hydrosphere and atmosphere. IAEA, Vienna, pp 153–164

    Google Scholar 

  • Gat JR, Airey PL (2006) Stable water isotopes in the atmosphere/biosphere/lithosphere interface: scaling-up from the local to continental scale, under humid and dry conditions. Glob Planet Change 51(2006):25–33

    Article  Google Scholar 

  • Helsel DR, Mueller DK, Slack JR (2006) Computer program for the Kendall family of trend tests: U.S. Geological Survey Scientific Investigations Report 2005–5275

  • Holt BD, Kumar R (1991) Oxygen isotope fractionation for understanding the sulphur cycle. In: Krouse HR, Grinenko VA (eds) Stable isotopes: natural and anthropogenic sulphur in the environment. SCOPE 43. Willey, Chichester, pp 27–41. http://isohis.iaea.org

  • Holt BD, Kumar R, Cunningham PT (1982) Primary sulfates in atmospheric sulfates: estimation by oxygen isotope ratio measurements. Science 217:51–53

    Article  Google Scholar 

  • IAEA (2001) GNIP Maps and Animations, International Atomic Energy Agency, Vienna. Accessible at http://isohis.iaea.org

  • IAEA (2006) Isotope Hydrology Information System. The ISHIS Database. Accessible at http://isohis.iaea.org/water

  • Jamieson RE, Wadleigh MA (1999) A study of the oxygen isotopic composition of precipitation sulphate in Eastern Newfoundland. Water Air Soil Pollut 110:405–420

    Article  Google Scholar 

  • Johnson DW, Mitchell MJ (1998) Responses of forest ecosystems to changing sulfur inputs. In: Maynard D (ed) Sulfur in the environment. Marcel Dekker, Inc., New York, pp 219–262

    Google Scholar 

  • Kendall C, Caldwell EA (1998) Fundamentals of isotope geochemistry chapter 2. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier Science B.V, Amsterdam, pp 52–86

    Google Scholar 

  • Krouse HR, Mayer B (2000) Sulphur and oxygen isotopes in sulphate. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, pp 195–231

    Chapter  Google Scholar 

  • Lajtha K, Crow SE, Yano Y, Kaushal SS, Sulzman E, Sollins P, Spears JDH (2005) Detrial controls on soil solution N and dissolved organic matter in soils: a field experiment. Biogeochemistry 76:261–281

    Article  Google Scholar 

  • Likens GE (2011) Limnological measures related to climate change in the Hubbard Brook Valley, USA. Inland Waters 1:93–99

    Google Scholar 

  • Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Likens GE, Bormann FH, Hedin LO, Driscoll CT (1990) Dry deposition of sulfur: a 23-year record for the Hubbard Brook forest ecosystem. Tellus 42B:319–329

    Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Mitchell MJ, Lovett GM, Bailey SW, Siccama TG, Reiners WA, Alewell C (2002) The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 60:235–316

    Article  Google Scholar 

  • Mayer B, Krouse HR (2004) Procedures for sulfur isotope abundance studies. In: De Groot P (ed) Handbook of stable isotope analytical techniques. Elsevier, Amsterdam, pp 538–596

    Google Scholar 

  • Mayer B, Fritz P, Prietzel H, Krouse HR (1995) The use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils. Appl Geochem 10:161–173

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25: 693–712. Available at http://www.cru.uea.ac.uk/~timm/data/index.html

    Google Scholar 

  • Mitchell MJ, Likens GE (2011) Watershed sulfur biogeochemistry: shift from atmospheric deposition dominance to climatic regulation. Envir Sci Tech 45:5267

    Article  Google Scholar 

  • Mitchell MJ, David MB, Harrison RB (1992) Chapter 9. Sulfur dynamics of forest ecosystems. In: Howarth RW, Stewart JWB, Ivanov MV (eds) Sulfur cycling on the continents. SCOPE vol. 48. John Wiley and Sons, New York, pp 215–254

    Google Scholar 

  • Mitchell MJ, Krouse HR, Mayer B, Stam AC, Zhang Y (1998) Use of stable isotopes in evaluating sulfur biogeochemistry of forest ecosystems chapter 15. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier Science B.V., Amsterdam, pp 489–518

    Chapter  Google Scholar 

  • Mitchell MJ, Mayer B, Bailey SW, Hornbeck JW, Alewell C, Driscoll CT, Likens GE (2001) Use of stable isotope ratios for evaluating sulfur sources and losses at the Hubbard Brook experimental forest. Water Air Soil Pollut 130:75–86

    Article  Google Scholar 

  • Mitchell MJ, Lovett G, Bailey S, Beall F, Burns D, Buso D, Clair TA, Courchesne F, Duchesne L, Eimers C, Jeffries D, Kahl S, Likens G, Moran MD, Rogers C, Schwede D, Shanley J, Weathers K, Vet R (2011) Comparisons of watershed sulfur budgets in Southeast Canada and Northeast US: new approaches and implications. Biogeochemistry 103:181–207

    Article  Google Scholar 

  • Novák M, Kirchner J, Groscheova H, Cerny J, Havel M, Krejci R, Buzek F (2000) Sulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of SOx. Geochimica et Cosmochimica Acta 64:367–383

    Article  Google Scholar 

  • Novák M, Kirchner JW, Fottová D, Prechová E, Jacková I, Krám P, Hruska J (2005a) Isotopic evidence for processes of sulfur retention/release in 13 forested catchments spanning a strong pollution gradient (Czech Republic, central Europe) Global Biogeochem Cycles 19, GB4012. doi:10.1029/2004GB002396

  • Novák M, Vile MA, Bottrell SH, Stepanova M, Jacková I, Buzek F, Prechova E, Newton RJ (2005b) Isotope systematics of sulfate-oxygen and sulfate-sulfur in six European peatlands. Biogeochemistry 76:187–213

    Article  Google Scholar 

  • Novák M, Mitchell MJ, Jacková I, Buzek F, Schweigstillová J, Erbanová L, Prikryl R, Fottová D (2007) Processes affecting oxygen isotope ratios of atmospheric and ecosystem sulfate in two contrasting forest catchments in Central Europe. Envir Sci Tech 41:703–709

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Rozanski, Kazimierz, Luis Araguas–Araguas, Roberto Gonfiantini (1992) Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science 258:981–985

    Article  Google Scholar 

  • Shanley JB, Mayer B, Mitchell MJ, Michel RL, Bailey S, Kendall C (2005) Tracing sources of streamwater sulfate during snowmelt using S and O isotope ratios of sulfate and 35S activity. Biogeochemistry 76:161–185

    Article  Google Scholar 

  • Snedecor GW, Cochran WG (1989) Statistical Methods, 8th edn. Iowa State University Press, Ames, p 524

    Google Scholar 

  • Stoddard JL, Jeffries DS, Luekeswille A, Clair TA, Dillon PJ, Driscoll CT (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578

    Article  Google Scholar 

  • Vachon RW, Welker JM, White JWC, Vaughn BH (2010) Monthly precipitation isoscapes (δ 18O) of the United States: connections with surface temperatures, moisture source conditions, and air mass trajectories. J Geophys Res 115:D21126. doi:10.1029/2010JD014105

    Article  Google Scholar 

  • Vadeboncoeur M, Hamburg S, Richardson A, Bailey A (2006) Examining climate change at the ecosystem level: A 50-year record from the Hubbard Brook Experimental Forest. http://www.hubbardbrook.org/research/climate/vadeboncoeur06.htm. Accessed at 13 May 2010

  • Van Stempvoort DR, Reardon EJ, Fritz P (1990) Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption. Geochim Cosmochim Acta 54:2817–2826

    Article  Google Scholar 

  • Welker JM (2000) Isotopic (d18O) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies. Hydrol Process 14:1449–1464

    Article  Google Scholar 

  • Yanai RD, Phillips RP, Arthur MA, Siccama TG, Hane EN (2005) Spatial and temporal variation in calcium and aluminum in Northern hardwood forest floors. Water Air Soil Pollut 160:109–118

    Article  Google Scholar 

  • Yurtsever Y, Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfiantini R (eds.) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. IAEA, Vienna Technical Report Series No. 210

  • Zhang Y, Mitchell MJ, Christ M, Likens GE, Krouse HR (1998) Stable sulfur isotopic biogeochemistry of the Hubbard Brook experimental forest, New Hampshire. Biogeochemistry 41:259–275

    Article  Google Scholar 

  • Zhang Y, Mitchell MJ, Driscoll CT, Likens GE (1999) Changes in soil sulfur constituents eight years after whole-tree harvesting. Can J For Res 29:356–364

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the National Science Foundation (NSF) as part of the Hubbard Brook Ecosystem Study, including the LTER and LTREB programs. It would not have been possible without the long-term, archived samples, and the time and effort put forth by many researchers within the Hubbard Brook Ecosystem Study. The study and dedication of the SUNY-ESF Biogeochemistry Laboratory and the University of Calgary Isotope Science Laboratory is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretchen R. Miles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, G.R., Mitchell, M.J., Mayer, B. et al. Long-term analysis of Hubbard Brook stable oxygen isotope ratios of streamwater and precipitation sulfate. Biogeochemistry 111, 443–454 (2012). https://doi.org/10.1007/s10533-011-9670-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9670-3

Keywords

Navigation