Skip to main content

Advertisement

Log in

Indirect N2O emissions from shallow groundwater in an agricultural catchment (Seine Basin, France)

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Production and accumulation of nitrous oxide (N2O), a major greenhouse gas, in shallow groundwater might contribute to indirect N2O emissions to the atmosphere (e.g., when groundwater flows into a stream or a river). The Intergovernmental Panel on Climate Change (IPCC) has attributed an emission factor (EF5g) for N2O, associated with nitrate leaching in groundwater and drainage ditches—0.0025 (corresponding to 0.25% of N leached which is emitted as N2O)—although this is the subject of considerable uncertainty. We investigated and quantified the transport and fate of nitrate (NO3 ) and dissolved nitrous oxide from crop fields to groundwater and surface water over a 2-year period (monitoring from April 2008 to April 2010) in a transect from a plateau to the river with three piezometers. In groundwater, nitrate concentrations ranged from 1.0 to 22.7 mg NO3 –N l−1 (from 2.8 to 37.5 mg NO3 –N l−1 in the river) and dissolved N2O from 0.2 to 101.0 μg N2O–N l−1 (and from 0.2 to 2.9 μg N2O–N l−1 in the river). From these measurements, we estimated an emission factor of EF5g = 0.0026 (similar to the value currently used by the IPCC) and an annual indirect N2O flux from groundwater of 0.035 kg N2O–N ha−1 year−1, i.e., 1.8% of the previously measured direct N2O flux from agricultural soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arah JRM (1990) Modelling spatial and temporal variability of denitrification. Biol Fertil Soils 9:71–77

    Article  Google Scholar 

  • Cebron A, Berthe T, Garnier J (2003) Nitrification and nitrifying bacteria in the lower Seine River and estuary (France). Appl Environ Microbiol 69:7091–7100

    Article  Google Scholar 

  • Cebron A, Garnier J, Billen G (2005) Nitrous oxide production and nitrification kinetics by natural bacterial communities of the lower Seine River (France). Aquat Microb Ecol 41:25–38

    Article  Google Scholar 

  • Clough T, Kelliher F, Wang Y, Sherlock R (2006) Diffusion of 15N-labelled N2O into soil columns: a promising method to examine the fate of N2O in subsoils. Soil Biol Biochem 38:1462–1468

    Article  Google Scholar 

  • Clough TJ, Addy K, Kellogg DQ, Nowicki BL, Gold AJ, Groffman PM (2007) Dynamics of nitrous oxide in groundwater at the aquatic-terrestrial interface. Global Change Biol 13:1528–1537

    Article  Google Scholar 

  • Davidson EA, Swank WT (1990) Nitrous oxide dissolved in soil solution: an insignificant pathway of nitrogen loss from a southeastern hardwood forest. Water Resour Res 26:1687–1690

    Google Scholar 

  • Deurer M, von der Heide C, Böttcher J, Duijnisveld W, Weymann D, Well R (2008) The dynamics of N2O near the groundwater table and the transfer of N2O into the unsaturated zone: a case study from a sandy aquifer in Germany. CATENA 72:362–373

    Article  Google Scholar 

  • Dowdell RJ, Burford JR, Crees R (1979) Losses of nitrous oxide dissolved in drainage water from agricultural land. Nature 278:342–343

    Article  Google Scholar 

  • Garnier J, Billen G, Vilain G, Martinez A, Silvestre M, Mounier E, Toche F (2009) Nitrous oxide (N2O) in the Seine river and basin: observations and budgets. Agric Ecosyst Environ 133:223–233

    Article  Google Scholar 

  • Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW, Watson SW (1980) Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl Environ Microbiol 40:526

    Google Scholar 

  • Granli T, Bockman OC (1994) Nitrous oxide from agriculture. Nor J Agric Sci (Norway) 12:1–128

    Google Scholar 

  • Groffman PM, Howard G, Gold AJ, Nelson WM (1996) Microbial nitrate processing in shallow groundwater in a riparian forest. J Environ Qual 25:1309–1316

    Article  Google Scholar 

  • Groffman PM, Gold AJ, Jacinthe P (1998) Nitrous oxide production in riparian zones and groundwater. Nutr Cycl Agroecosyst 52:179–186

    Article  Google Scholar 

  • Hasegawa K, Hanaki K, Matsuo T, Hidaka S (2000) Nitrous oxide from the agricultural water system contaminated with high nitrogen. Chemosphere-Global Change Sci 2:335–345

    Article  Google Scholar 

  • Hiscock KM, Bateman AS, Muhlherr IH, Fukada T, Dennis PF (2003) Indirect emissions of nitrous oxide from regional aquifers in the United Kingdom. Environ Sci Technol 37:3507–3512

    Article  Google Scholar 

  • Höll BS, Jungkunst HF, Fiedler S, Stahr K (2005) Indirect nitrous oxide emission from a nitrogen saturated spruce forest and general accuracy of the IPCC methodology. Atmos Environ 39:5959–5970

    Article  Google Scholar 

  • IPCC (1996) In: Houghton JT, Meira Filho LG, Lim B, Treanton K, Mamaty I, Bonduki Y, Griggs DJ, Callender BA (eds) Revised 1996 IPCC guidelines for national greenhouse gas inventories IPCC/OECD/IEA. UK Meteorological Office, Bracknell, UK

  • IPCC (2006) In: Eggleston HA, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IPCC guidelines for national greenhouse gas inventories. Prepared by the national greenhouse gas inventories programme. IGES, Japan

  • Jacinthe PA, Groffman PM, Gold AJ, Mosier A (1998) Patchiness in microbial nitrogen transformations in groundwater in a riparian forest. J Environ Qual 27:156–164

    Article  Google Scholar 

  • Jones MN (1984) Nitrate reduction by shaking with cadmium: alternative to cadmium columns. Water Res (Oxford) 18:643–646

    Article  Google Scholar 

  • Kim D, Isenhart TM, Parkin TB, Schultz RC, Loynachan TE (2009a) Nitrate and dissolved nitrous oxide in groundwater within cropped fields and riparian buffers. Biogeosci Discuss 6:651–685

    Article  Google Scholar 

  • Kim D, Isenhart TM, Parkin TB, Schultz RC, Loynachan TE (2009b) Nitrate and dissolved nitrous oxide in groundwater within cropped fields and riparian buffers. Biogeosci Discuss 6:651–685

    Article  Google Scholar 

  • Knowles R (2000) Nitrogen cycle. In: Encyclopedia of microbiology. Academic Press, San Diego

  • Koba K, Osaka K, Tobari Y, Toyoda S, Ohte N, Katsuyama M, Suzuki N, Itoh M, Yamagishi H, Kawasaki M, Kim SJ, Yoshida N, Nakajima T (2009) Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. Geochim Cosmochim Acta 73:3115–3133

    Article  Google Scholar 

  • Laverman AM, Garnier J, Mounier E, Roose-Amsaleg C (2010) Nitrous oxide production kinetics during nitrate reduction in river sediments: the effect of nitrate and carbon. Water Res 44:1753–1764

    Article  Google Scholar 

  • Mackin JE, Aller RC (1984) Ammonium adsorption in marine sediments. Limnol Oceanogr 29:250–257

    Article  Google Scholar 

  • Mandernack KW, Rahn T, Kinney C, Wahlen M (2000) The biogeochemical controls of the δ15N and δ18O of N2O produced in landfill cover soils. J Geophys Res 105:17709

    Article  Google Scholar 

  • Mathieu O, Lévęque J, Hénault C, Milloux MJ, Bizouard F, Andreux F (2006) Emissions and spatial variability of N2O, N2 and nitrous oxide mole fraction at the field scale, revealed with 15N isotopic techniques. Soil Biol Biochem 38:941–951

    Article  Google Scholar 

  • McMahon PB, Bruce BW, Becker MF, Pope LM, Dennehy KF (2000) Occurrence of nitrous oxide in the central high plains aquifer, 1999. Environ Sci Technol 34:4873–4877

    Article  Google Scholar 

  • Mégnien C (1979) Hydrogéologie du centre du Bassin de Paris: contribution à l’étude de quelques aquifères principaux. Principaux résultats scientifiques et techniques du Service géologique national, Paris, p 122

    Google Scholar 

  • Minami K, Fukushi S (1984) Methods for measuring N2O flux from water surface and N2O dissolved in water from agricultural land. Soil Sci Plant Nutr 30:495–502

    Article  Google Scholar 

  • Minamikawa K, Nishimura S, Sawamoto T, Nakajima Y, Yagi K (2010) Annual emissions of dissolved CO2, CH4, and N2O in the subsurface drainage from three cropping systems. Global Change Biol 16:796–809

    Article  Google Scholar 

  • Mosier AR, Schimel DS (1993) Nitrification and denitrification. Nitrogen isotope techniques. Academic Press, San Diego, CA, pp 181–208

    Google Scholar 

  • Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248

    Article  Google Scholar 

  • Mühlherr IH, Hiscock KM (1998) Nitrous oxide production and consumption in British limestone aquifers. J Hydrol 211:126–139

    Article  Google Scholar 

  • Obenhuber DC, Lowrance R (1991) Reduction of nitrate in aquifer microcosms by carbon additions. J Environ Qual 20:255

    Article  Google Scholar 

  • Osaka K, Ohte N, Koba K, Katsuyama M, Nakajima T (2006) Hydrologic controls on nitrous oxide production and consumption in a forested headwater catchment in central Japan. J Geophys Res 111:G01013

    Article  Google Scholar 

  • Papen H, Butterbach-Bahl K (1999) A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany 1. N2O emissions. J Geophys Res-Atmos 104:18487–18503

    Article  Google Scholar 

  • Parkin TB (1987) Soil microsites as a source of denitrification variability. Soil Sci Soc Am J 51:1194–1199

    Article  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123

    Article  Google Scholar 

  • Reay DS, Smith KA, Edwards AC (2003) Nitrous oxide emission from agricultural drainage waters. Global Change Biol 9:195–203

    Article  Google Scholar 

  • Reay DS, Smith KA, Edwards AC, Hiscock KM, Dong LF, Nedwell DB (2005) Indirect nitrous oxide emissions: revised emission factors. J Integr Environ Sci 2:153–158

    Article  Google Scholar 

  • Reay DS, Edwards AC, Smith KA (2009) Importance of indirect nitrous oxide emissions at the field, farm and catchment scale. Agric Ecosyst Environ 133:163–169

    Article  Google Scholar 

  • Ronen D, Magaritz M, Almon E (1988) Contaminated aquifers are a forgotten component of the global N2O budget. Nature 335:57–59

    Article  Google Scholar 

  • Rosenfeld JK (1979) Ammonium adsorption in nearshore anoxic sediments. Limnol Oceanogr 24:356–364

    Article  Google Scholar 

  • Sawamoto T, Kusa K, Hu R, Hatano R (2002) Dissolved N2O, CH4 and CO2 emissions from underdrainage in a structured clay soil cultivated with onion in Central Hokkaido, Japan. In: Dans 17th World Congress of Soil Science, Bangkok, Thailand, 14–20 August 2002

  • Sawamoto T, Nakajima Y, Kasuya M, Tsuruta H, Yagi K (2005) Evaluation of emission factors for indirect N2O emission due to nitrogen leaching in agro-ecosystems. Geophys Res Lett 32:L03403

    Article  Google Scholar 

  • Schnabel RR, Gburek WJ, Stout WL (1994) Evaluating riparian zone control on nitrogen entry into Northeast streams. In: Riparian ecosystems in the humid US: functions, values and management: March 15–18, 1993, Sheraton Colony Square, Atlanta, Georgia, pp 432

  • Sebilo M (2003) Utilisation du traçage isotopique naturel pour caractériser et quantifier les processus de nitrification et de dénitrification à l’échelle du réseau hydrographique de la Seine. Thèse de l’Université PARIS VI, pp 123

  • Sebilo M, Billen G, Grably M, Mariotti A (2003) Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 63:35–51

    Article  Google Scholar 

  • Slawyk G, MacIsaac JJ (1972) Comparison of two automated ammonium methods in a region of coastal upwelling. Deep-Sea Res 19:521–524

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, et al. (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007, mitigation, contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 497–540

  • Spalding RF, Parrott JD (1994) Shallow groundwater denitrification. Sci Total Environ 141:16–25

    Article  Google Scholar 

  • Spalding RF, Gormly JR, Nash KG (1978) Carbon contents and sources in ground waters of the Central Platte Region in Nebraska. J Environ Qual 7:428

    Article  Google Scholar 

  • Sutka RL, Ostrom NE, Ostrom PH, Breznak JA, Gandhi H, Pitt AJ, Li F (2006) Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl Environ Microbiol 72:638–644

    Article  Google Scholar 

  • Tallec G, Garnier J, Billen G, Gousailles M (2006) Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level. Water Res 40:2972–2980

    Article  Google Scholar 

  • Tallec G, Garnier J, Billen G, Gousailles M (2008) Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation. Bioresour Technol 99:2200–2209

    Article  Google Scholar 

  • Tiedje J (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 179–244

    Google Scholar 

  • Ueda S, Ogura N, Wada E (1991) Nitrogen stable isotope ratio of groundwater N2O. Geophys Res Lett 18:1449–1452

    Article  Google Scholar 

  • Ueda S, Ogura N, Yoshinari T (1993) Accumulation of nitrous oxide in aerobic groundwaters. Water Res 27:1787–1792

    Article  Google Scholar 

  • van den Heuvel R, Hefting M, Tan N, Jetten M, Verhoeven J (2009) N2O emission hotspots at different spatial scales and governing factors for small scale hotspots. Sci Total Environ 407:2325–2332

    Article  Google Scholar 

  • Venterink HO, Hummelink E, Van den Hoorn MW (2003) Denitrification potential of a river floodplain during flooding with nitrate-rich water: grasslands versus reedbeds. Biogeochemistry 65:233–244

    Article  Google Scholar 

  • Verhoff FH, Yaksich SM, Melfi DA (1980) River nutrient and chemical transport estimation. J Environ Eng Div 106:591–608

    Google Scholar 

  • Vilain G, Garnier J, Tallec G, Cellier P (2010) Effect of slope position and land use on nitrous oxide (N2O) emissions (Seine Basin, France). Agric For Meteorol 150:1192–1202

    Article  Google Scholar 

  • Vilain G, Garnier J, Roose-Amsaleg C, Laville P (2011) Potential of denitrification and nitrous oxide production from agricultural soil profiles (Seine Basin, France) (in revision)

  • von der Heide C, Bottcher J, Deurer M, Duijnisveld WH, Weymann D, Well R (2009) Estimation of indirect nitrous oxide emissions from a shallow aquifer in Northern Germany. J Environ Qual 38:2161–2171

    Article  Google Scholar 

  • Well R, Augustin J, Davis J, Griffith SM, Meyer K, Myrold DD (2001) Production and transport of denitrification gases in shallow ground water. Nutr Cycl Agroecosyst 60:65–75

    Article  Google Scholar 

  • Well R, Flessa H, Jaradat F, Toyoda S, Yoshida N (2005) Measurement of isotopomer signatures of N2O in groundwater. J Geophys Res 110:G02006

    Article  Google Scholar 

  • Weller DE, Correll DL, Jordan TE (1994) Denitrification in riparian forests receiving agricultural discharges. In: Mitsch WJ (ed) Global wetlands: old world and new. Elsevier, New York

    Google Scholar 

  • Weymann D, Well R, Heide C, Böttcher J, Flessa H, Duijnisveld WHM (2009) Recovery of groundwater N2O at the soil surface and its contribution to total N2O emissions. Nutr Cycl Agroecosyst 85:299–312

    Article  Google Scholar 

  • Yoshida N (1988) 15N-depleted N2O as a product of nitrification. Nature 225:528–529

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by a PhD scholarship from the CNRS via The Federation Ile-de-France for Research on the Environment (FIRE FR3020 CNRS & UPMC). The FIRE FR3020 is acknowledged for its interdisciplinary research framework, for funding the site’s equipment (piezometer installation, instrumentation with level sensors, and a meteorological station). The PIREN-Seine program is also acknowledged for providing funding for the analysis. Our thanks are extended to the Cemagref (Patrick Ansart in particular for his help in the field). We also sincerely thank Jaufrey Chollet, Jennifer Martin, Anun Martinez, Benjamin Mercier, Xuan Anh Nghiem, and Jean-Baptiste Pettit for their kind laboratory and/or field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Vilain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilain, G., Garnier, J., Tallec, G. et al. Indirect N2O emissions from shallow groundwater in an agricultural catchment (Seine Basin, France). Biogeochemistry 111, 253–271 (2012). https://doi.org/10.1007/s10533-011-9642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9642-7

Keywords

Navigation