Skip to main content

Advertisement

Log in

Seasonal variations in indirect N2O emissions from an agricultural headwater ditch

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Agricultural headwater ditches are an important source of indirect agricultural nitrous oxide (N2O) emissions, but their contribution is difficult to quantify. In the present study, the static chamber-gas chromatography technique was used for measurement of N2O emissions from vegetated (V, the whole ditch ecosystem) and non-vegetated (NV, the sediment-water interface only) zones in an agricultural headwater ditch in the Central Sichuan Basin in Southwestern China during 2014–2015. Annual N2O emissions from the agricultural headwater ditch were similar to direct N2O emissions from an adjacent N-fertilized purple soil cropland, suggesting nitrogen (N)-enriched ditches are important anthropogenic N2O sources. Mean cumulative N2O emissions during summer and autumn were higher than those in spring and winter. Overlying water nitrate (NO3 -N) concentration and sediment-water interface temperature were primary factors affecting seasonal N2O emissions. Heavy precipitation transported NO3 -N from cropland and increase NO3 -N in the agricultural headwater ditch water, and subsequently stimulate N2O emissions. A literature review of EF5r (the indirect N2O emission factor for rivers) revealed a mean value of 0.23%, similar to our values (0.27%), and also the default value (0.25%) proposed by the Intergovernmental Panel on Climate Change. The number of studies on indirect N2O emissions remains limited, and more in situ measurements are needed to have more accurate values of EF5r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beaulieu JJ, Arango CP, Hamilton SK, Tank JL (2008) The production and emission of nitrous oxide from headwater streams in the Midwestern United States. Glob Chang Biol 14:878–894

    Article  Google Scholar 

  • Beaulieu JJ, Arango CP, Tank JL (2009) The effects of season and Agriculture on nitrous oxide production in headwater streams. J Environ Qual 38:637–646

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JJ, Tank JL, Hamilton SK, Wollheim WM, Hall RO, Mulholland PJ, Peterson BJ, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Grimm NB, Johnson SL, McDowell WH, Poole GC, Valett HM, Arango CP, Bernot MJ, Burgin AJ, Crenshaw CL, Helton AM, Johnson LT, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2011) Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci U S A 108:214–219

    Article  CAS  PubMed  Google Scholar 

  • Clough TJ, Bertram JE, Sherlock RR, Leonard RL, Nowicki BL (2006) Comparison of measured and EF5-r-derived N2O fluxes from a spring-fed river I. Glob Chang Biol 12:352–363

    Article  Google Scholar 

  • Cole JJ, Caraco NF (2001) Emissions of nitrous oxide (N2O) from a tidal, freshwater river, the Hudson River, New York. Environ Sci Technol 35:991–996

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Dhondt K, Boeckx P, Hofman G, Van Cleemput O (2004) Temporal and spatial patterns of denitrification enzyme activity and nitrous oxide fluxes in three adjacent vegetated riparian buffer zones. Biol Fertil Soils 40:243–251

    Article  CAS  Google Scholar 

  • Dong LF, Nedwell DB, Colbeck I, Finch J (2004) Nitrous oxide emission from some English and welsh rivers and estuaries. Water Air Soil Pollut Focus 4:127–134

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erlsman JW, Bekunda M, Cai ZC, Reney JR, Martinelli LA, Seitzigner SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ruiz R, Pattinson S, Whitton B (1998) Denitrification in river sediments: relationship between process rate and properties of water and sediment. Freshw Biol 39:467–476

    Article  CAS  Google Scholar 

  • Hama-Aziz ZQ, Hiscock KM, Cooper RJ (2017) Indirect nitrous oxide emission factors for agricultural field drains and headwater streams. Environ Sci Technol 51:301–307

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Hanaki K, Matsuo T, Hidaka S (2000) Nitrous oxide from the agricultural water system contaminated with high nitrogen. Chemosphere Global Change Sci 2:335–345

    Article  CAS  Google Scholar 

  • Hedin LO, von Fischer JC, Ostrom NE, Kennedy BP, Brown MG, Robertson GP (1998) Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology 79:684–703

    Google Scholar 

  • Herrman KS, Bouchard V, Moore RH (2008) Factors affecting denitrification in agricultural headwater streams in Northeast Ohio, USA. Hydrobiologia 598:305–314

    Article  CAS  Google Scholar 

  • Hinshaw SE, Dahlgren RA (2013) Dissolved nitrous oxide concentrations and fluxes from the eutrophic San Joaquin River, California. Environ Sci Technol 47:1313–1322

    CAS  PubMed  Google Scholar 

  • Höll BS, Jungkunst HF, Fiedler S, Stahr K (2005) Indirect nitrous oxide emission from a nitrogen saturated spruce forest and general accuracy of the IPCC methodology. Atmos Environ 39:5959–5970

    Article  Google Scholar 

  • Holmes RM, Jones JB, Fisher SG, Grimm NB (1996) Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 33:125–146

    Article  Google Scholar 

  • IPCC (1997) Revised 1996 IPCC Guidelines for National Greenhouse Inventories. Intergovernmental Panel on Climate Change (IPCC), IPCC/OECD/IEA. Paris, France

  • IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, prepared by the National Greenhouse Gas Inventories Programme. Volume 4. Agriculture, Forestry and Other Land Use. Chapter 11. Japan: Institute for Global Environmental Strategies (IGES), pp 11.19–11.22

  • IPCC (2013) Climate change 2013, the physical Science basis. Working group I contribution to the fifth assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Jorgensen CJ, Elberling B (2012a) Effects of flooding-induced N2O production, consumption and emission dynamics on the annual N2O emission budget in wetland soil. Soil Biol Biochem 53:9–17

    Article  CAS  Google Scholar 

  • Jorgensen CJ, Struwe S, Elberling B (2012b) Temporal trends in N2O flux dynamics in a Danish wetland-effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability. Glob Chang Biol 18:210–222

    Article  Google Scholar 

  • Kröeger R, Holland MM, Moore MT, Cooper CM (2007) Hydrological variability and agricultural drainage ditch inorganic nitrogen reduction capacity. J Environ Qual 36:1646–1652

    Article  Google Scholar 

  • Laursen AE, Seitzinger SP (2004) Diurnal patterns of denitrification, oxygen consumption and nitrous oxide production in rivers measured at the whole-reach scale. Freshw Biol 49:1448–1458

    Article  CAS  Google Scholar 

  • Liu LL, Greaver TL (2009) A review of nitrogen enrichment effects on threebiogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4emission. Ecol Lett 12:1103–1117

    Article  CAS  PubMed  Google Scholar 

  • McMahon PB, Dennehy KF (1999) N2O emissions from a nitrogen-enriched river. Environ Sci Technol 33:21–25

    Article  CAS  Google Scholar 

  • Moore MT, Bennett ER, Cooper CM, Smith S, Shields FD, Milam CD, Farris JL (2001) Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA. Agric Ecosyst Environ 87:309–314

    Article  CAS  Google Scholar 

  • Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248

    Article  CAS  Google Scholar 

  • Mulholland PJ, Valett HM, Webster JR, Thomas SA, Cooper LW, Hamilton SK, Peterson BJ (2004) Stream denitrification and total nitrate uptake rates measured using a field 15N tracer addition approach. Limnol Oceanogr 49:809–820

    Article  CAS  Google Scholar 

  • Mulholland PJ, Helton AM, Poole GC, Hall RO, Hamilton SK, Peterson BJ, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Findlay SEG, Gregory SV, Grimm NB, Johnson SL, McDowell WH, Meyer JL, Valett HM, Webster JR, Arango CP, Clough JJ, Bernot MJ, Burgin AJ, Crenshaw CL, Johnson LT, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–206

    Article  CAS  PubMed  Google Scholar 

  • Nevison C (2000) Review of the IPCC methodology for estimating nitrous oxide emissions associated with agricultural leaching and runoff. Chemosphere Global Change Sci 2:493–500

    Article  CAS  Google Scholar 

  • Outram FN, Hiscock KM (2012) Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: a significant contribution to agricultural greenhouse gas budgets? Environ Sci Technol 46:8156–8163

    Article  CAS  PubMed  Google Scholar 

  • Peterson BJ, Wollheim WM, Mulholland PJ, Webster JR, Meyer JL, Tank JL, Martí E, Bowden WB, Valett HM, Hershey AE, McDowell WH, Dodds WK, Hamilton SK, Gregory S, Morrall DD (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90

    Article  CAS  PubMed  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Reay DS, Smith KA, Edwards AC (2003) Nitrous oxide emission from agricultural drainage waters. Glob Chang Biol 9:195–203

    Article  Google Scholar 

  • Reddy KR, Patrick WH, Lindau CW (1989) Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnol Oceanogr 34:1004–1013

    Article  CAS  Google Scholar 

  • Royer TV, Tank JL, David MB (2004) Transport and fate of nitrate in headwater agricultural streams in Illinois. J Environ Qual 33:1296–1304

    Article  CAS  PubMed  Google Scholar 

  • Rusch H, Rennenberg H (1998) Black alder (Alnusglutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201:1–7

    Article  CAS  Google Scholar 

  • Schipper LA, Robertson WD, Gold AJ, Jaynes DB, Cameron SC (2010) Denitrifying bioreactors-an approach for reducing nitrate loads to receiving waters. Ecol Eng 36:1532–1543

    Article  Google Scholar 

  • Seitzinger SP, Kroeze C, Styles RV (2000) Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects. Chemosphere Global Change Sci 2:267–279

    Article  CAS  Google Scholar 

  • Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Drecht GV (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090

    Article  CAS  PubMed  Google Scholar 

  • Shen LD, Zheng PH, Ma SJ (2016) Nitrogen loss through anaerobic ammonium oxidation in agricultural drainage ditches. Biol Fertil Soils 52(2):127–136

    Article  CAS  Google Scholar 

  • Starry OS, Valett HM, Schreiber ME (2005) Nitrification rates in a headwater stream: influences of seasonal variation in C and N supply. J N Am Benthol Soc 24:753–768

    Article  Google Scholar 

  • Stow CA, Walker JT, Cardoch L, Spence P, Geron C (2005) N2O emissions from streams in the Neuse River watershed, North Carolina. Environ Sci Technol 39:6999–7004

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhu B (2011) Nitrate loss via overland flow and interflow from a sloped farmland in the hilly area of purple soil, China. Nutr Cycl Agroecosyst 90:309–319

    Article  CAS  Google Scholar 

  • Wang JN, Chen NW, Yan WJ, Wang B, Yang LB (2015) Effect of dissolved oxygen and nitrogen on emission of N2O from rivers in China. Atmos Environ 103:347–356

    Article  CAS  Google Scholar 

  • Xia YQ, Li YF, Ti CP, Li XB, Zhao YQ, Yan XY (2013) Is indirect N2O emission a significant contributor to the agricultural greenhouse gas budget? A case study of a rice paddy-dominated agricultural watershed in eastern China. Atmos Environ 77:943–950

    Article  CAS  Google Scholar 

  • Yan WJ, Yang LB, Wang F, Wang JN, Ma P (2012) Riverine N2O concentrations, exports to estuary and emissions to atmosphere from the Changjiang River in response to increasing nitrogen loads. Glob Biogeochem Cycles 26:GB4006. doi:10.1029/2010GB003984

    Article  Google Scholar 

  • Yu KW, Wang ZP, Chen GX (1997) Nitrous oxide and methane transport through rice plants. Biol Fertil Soils 24:341–343

    Article  CAS  Google Scholar 

  • Yuan JJ, Ding WX, Liu DY, Kang H, Freeman C, Xiang J, Lin YX (2015) Exotic Spartinaalterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Glob Chang Biol 21:1567–1580

    Article  PubMed  Google Scholar 

  • Zhou MH, Zhu B, Butterbach-Bahl K, Wang T, Bergmann J, Brueggemann N, Wang ZH, Li TK, Kuang FH (2012) Nitrate leaching, direct and indirect nitrous oxide fluxes from sloping cropland in the purple soil area, southwestern China. Environ Pollut 162:361–368

    Article  CAS  PubMed  Google Scholar 

  • Zhou MH, Zhu B, Butterbach-Bahl K, Zheng XH, Wang T, Wang YQ (2013) Nitrous oxide emissions and nitrate leaching from a rain-fed wheat-maize rotation in the Sichuan Basin, China. Plant Soil 362:149–159

    Article  CAS  Google Scholar 

  • Zhou MH, Zhu B, Brueggemann N, Wang XG, Zheng XH, Butterbach-Bahl K (2015) Nitrous oxide and methane emissions from a subtropical rice-rapeseed rotation system in China: a 3-year field case study. Agric Ecosyst Environ 212:297–309

    Article  CAS  Google Scholar 

  • Zhu B, Wang T, Kuang FH, Luo ZX, Tang JL, Xu TP (2009) Measurements of nitrate leaching from a hill slope cropland in the Central Sichuan Basin, China. Soil Sci Soc Am J 73:1419–1426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was provided by the Funding of National Program on Key Basic Research Projects of China (Grant No. 2012CB417101) and National Natural Science Foundation of China (Grant No. 41271321). We sincerely thank the staff at Yanting station for supporting the field measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhu.

Electronic supplementary material

ESM 1

(DOCX 445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Zhu, B. & Akiyama, H. Seasonal variations in indirect N2O emissions from an agricultural headwater ditch. Biol Fertil Soils 53, 651–662 (2017). https://doi.org/10.1007/s00374-017-1207-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-017-1207-z

Keywords

Navigation