Skip to main content
Log in

Elevated air carbon dioxide concentrations increase dissolved carbon leaching from a cropland soil

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Increasing leaching losses of carbon from soils due to accelerated weathering and increasing concentrations of dissolved carbon as a result of intensified soil respiration are suspected to provide a negative feedback on rising atmospheric CO2 concentrations. We tested this hypothesis by studying concentrations of dissolved carbon and groundwater recharge at the Braunschweig free air carbon dioxide enrichment (FACE) experiment under winter wheat and winter barley. Dissolved carbon concentrations under elevated atmospheric CO2 and ambient conditions were rather similar and not consistently higher under FACE. An analysis of δ13C signatures suggested that dissolved organic and inorganic carbon contained 9–29% (DOC) and 26–49% (DIC) of “new” carbon originating from CO2 added to the FACE rings. Dissolved inorganic carbon additionally contained 15–42% of carbonate-derived C. A 15% reduction in evapotranspiration under elevated CO2 increased groundwater recharge by 60 mm or 55%, which was the main driver for an observed 81% increase in dissolved carbon leaching from 2.7 to 4.9 g C m−2 year−1 at 90 cm depth. Our results suggest that future changes of dissolved carbon leaching losses will be mainly governed by changes in climate and groundwater recharge and to a lesser extent by increasing dissolved carbon concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amiotte-Suchet P, Aubert D, Probst JL, Gauthier-Lafaye F, Probst A, Andreux F, Viville D (1999) δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges mountains, France). Chem Geol 159:129–145

    Article  Google Scholar 

  • Andrews JA, Schlesinger WH (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Glob Biogeochem Cycles 15(1):149–162

    Article  Google Scholar 

  • Aumont O, Orr JC, Monfray P, Ludwig W, Amiotte-Suchet P, Probst J-L (2001) Riverine-driven interhemispheric transport of carbon. Glob Biogeochem Cycles 15(2):393–405

    Article  Google Scholar 

  • Bader MKF, Körner C (2010) No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Glob Change Biol 16:2830–2843

    Article  Google Scholar 

  • Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews JA, Schlesinger WH (2006) Long-term effects of free-air CO2 enrichment (FACE) on soil respiration. Biogeochemistry 77(1):91–116

    Article  Google Scholar 

  • Burkhart S, Manderscheid R, Weigel HJ (2009) Canopy CO2 exchange of sugar beet under different CO2 concentrations and nitrogen supply: results from a free-air CO2 enrichment study. Plant Biol 11:109–123

    Article  Google Scholar 

  • Burkhart S, Manderscheid R, Wittich K-P, Löpmeier F-J, Weigel H-J (2011) Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown in free-air CO2 enrichment. Plant Biol 13(2):258–268

    Article  Google Scholar 

  • Chadwick OA, Kelly EF, Merritts DM, Amundson RG (1994) Carbon dioxide consumption during soil development. Biogeochemistry 24:115–127

    Article  Google Scholar 

  • Filion M, Dutilleul P, Potvin C (2000) Optimum experimental design for free-air carbon dioxide enrichment (FACE) studies. Glob Change Biol 6(7):843–854

    Article  Google Scholar 

  • Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198

    Article  Google Scholar 

  • Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439(7078):835–838

    Article  Google Scholar 

  • Giesemann A, Weigel H-J (2008) Soil carbon isotopic composition and soil carbon content in an agroecosystem during six years of Free Air Carbon dioxide Enrichment (FACE). Isot Environ Health Stud 44(4):349–363

    Article  Google Scholar 

  • Hagedorn F, Blaser P, Siegwolf R (2002) Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon—clues from δ13C signature. Soil Biol Biochem 34(3):355–366

    Article  Google Scholar 

  • Hagedorn F, Saurer M, Blaser P (2004) A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci 55(1):91–100

    Article  Google Scholar 

  • Hagedorn F, van Hees PAW, Handa T, Hättenschwiler S (2008) Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Glob Biogeochem Cycles 22:GB2004

    Google Scholar 

  • Henke J, Böttcher U, Neukam D, Sieling K, Kage H (2008) Evaluation of different agronomic strategies to reduce nitrate leaching after winter oilseed rape (Brassica napus L.) using a simulation model. Nutr Cycl Agroecosyst 82(3):299–314

    Article  Google Scholar 

  • Kage H, Stützel H (1999) HUME: an object oriented component library for generic modular modelling of dynamic systems. In: Donatelli CSM, Villalobos F, Villar JM (eds) Modelling cropping systems. European Society of Agronomy conference, Lleida, June 1999, pp 299–300

  • Karberg NJ, Pregitzer KS, King JS, Friend AL, Wood JR (2005) Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 142(2):296–306

    Article  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Article  Google Scholar 

  • Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grünwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moors E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana J-F, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching is a crucial component of the net ecosystem carbon balance. Glob Change Biol 17(2):1167–1185

    Article  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF (2001) Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128(2):205–237

    Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60(10):2859–2876

    Article  Google Scholar 

  • Lewin KF, Hendrey GR, Kolber Z (1992) Brookhaven National Laboratory Free-air carbon-dioxide enrichment facility. Crit Rev Plant Sci 11:135–141

    Google Scholar 

  • Macpherson GL, Roberts JA, Blair JM, Townsend MA, Fowle DA, Beisner KR (2008) Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA. Geochim Cosmochim Acta 72(23):5581–5599

    Article  Google Scholar 

  • Manderscheid R, Pacholski A, Frühauf C, Weigel HJ (2009) Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crop Res 110(3):185–196

    Article  Google Scholar 

  • Monteith JL (1973) Principles of environmental physics. Edward Arnold, London

    Google Scholar 

  • Oh NH, Richter DD (2004) Soil acidification induced by elevated atmospheric CO2. Glob Change Biol 10:1936–1946

    Article  Google Scholar 

  • Oh NH, Kim HS, Richter DD (2005) What regulates soil CO2 concentrations? A modelling approach to CO2 diffusion in deep soil profiles. Environ Eng Sci 22(1):38–44

    Article  Google Scholar 

  • Oh NH, Hofmockel M, Lavine ML, Richter DD (2007) Did elevated atmospheric CO2 alter soil mineral weathering?: an analysis of 5-year soil water chemistry data at Duke FACE study. Glob Change Biol 13(12):2626–2641

    Article  Google Scholar 

  • Pagani M, Caldeira K, Berner R, Beerling DJ (2009) The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature 460:85–88

    Article  Google Scholar 

  • Pawellek F, Veizer J (1994) Carbon cycle in the upper Danube and its tributaries: δ13C constraints. Isr J Earth Sci 43:187–194

    Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269

    Article  Google Scholar 

  • Siemens J, Kaupenjohann M (2004) Comparison of three methods for field measurement of solute leaching in a sandy soil. Soil Sci Soc Am J 68(4):1191–1196

    Article  Google Scholar 

  • Søe ARB, Giesemann A, Anderson TH, Weigel HJ, Buchmann N (2004) Soil respiration under elevated CO2 and its partitioning into recently assimilated and older carbon sources. Plant Soil 262(1–2):85–94

    Article  Google Scholar 

  • Spiegelhalter DJ, Thomas A, Best NG, Lunn D (2003) WinBUGS User manual version 1.4. http://www.mrc-bsu.cam.ac.uk/bugs. Assessed 1 Dec 2010

  • Stockle CO, Martin SA, Campbell GS (1994) CropSyst, a cropping systems simulation model: water/nitrogen budgets and crop yield. Agric Syst 46(3):335–359

    Article  Google Scholar 

  • Suarez DL (1986) A soil water extractor that minimizes CO2 degassing and pH errors. Water Resour Res 22(6):876–880

    Article  Google Scholar 

  • Trockel A (2007) Vergleich von Wasserhaushaltsmodellierungen am Standort FAL, Studienarbeit, Institute of Geoecology, Braunschweig Technical University, Braunschweig, 69 pp

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Weigel H-J, Pacholski A, Burkhart S, Helal M, Heinemeyer O, Kleikamp B, Manderscheid R, Frühauf C, Hendrey GF, Lewin K, Nagy J (2005) Carbon turnover in a crop rotation under free air CO2 enrichment (FACE). Pedosphere 15(6):728–738

    Google Scholar 

  • Weigel HJ, Manderscheid R, Burkart S, Pacholski A, Heinemeyer O (2006) Responses of an arable crop rotation system to elevated CO2. In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (eds) Managed ecosystems and CO2: case studies, Processes, and Perspectives. Ecological studies 187. Springer, Berlin, pp 122–137

  • Wösten JHM, Van Genuchten MT (1988) Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci Soc Am J 52(6):1762–1770

    Article  Google Scholar 

  • Zenker T (2003) Verdunstungswiderstände und Gras-Referenzverdunstung, Lysimeter-untersuchungen zum Penman-Monteith-Ansatz. PhD thesis, Berlin University of Technology, Berlin, 147 pp

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta 59(1):107–114

    Article  Google Scholar 

  • Zhong S, Liang W, Lou Y, Li Q, Zhu J (2009) Four years of free-air CO2 enrichment enhance soil C concentrations in a Chinese wheat field. J Environ Sci 21:1221–1224

    Article  Google Scholar 

Download references

Acknowledgments

This project was partly funded by the German Research Foundation (Grant SI 1106/2-1). The FACE experiment was financed by the German Ministry of Food, Agriculture and Consumer Protection (BMELV). Support of the Brookhaven National Laboratory Upton, NY, USA and the staff of the Institute of Biodiversity of the Johann Heinrich von Thünen-Institute is gratefully acknowledged. We thank Franz Josef Löpmeier and Harald Braden of the German Meteorological Service for providing weather data, soil water contents, and drainage volumes of lysimeters at the Braunschweig site, as well as the Institute of Soil Science, University of Hohenheim and Christine Ehrlicher for determination of soil carbon contents, and Beate Gehnen for measuring the δ13C values of DIC. We acknowledge the suggestions of two anonymous reviewers that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Siemens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemens, J., Pacholski, A., Heiduk, K. et al. Elevated air carbon dioxide concentrations increase dissolved carbon leaching from a cropland soil. Biogeochemistry 108, 135–148 (2012). https://doi.org/10.1007/s10533-011-9584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9584-0

Keywords

Navigation