Skip to main content

Advertisement

Log in

Fluxes and budgets of Cd, Zn, Cu, Cr and Ni in a remote forested catchment in Germany

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The input of heavy metals by atmospheric deposition to forested watersheds substantially decreased during the last decades in many areas. The goal of our study was to identify the present sinks and sources of metals and factors influencing metal mobility at the catchment and soil profile scale. We determined concentrations and fluxes of Cd, Zn, Cu, Cr and Ni in precipitation, litterfall, soil solutions (Oi, Oe, Oa horizon percolates, 20 and 90 cm soil depth) and runoff in a forest ecosystem in NE-Bavaria, Germany for 1 year. The metal concentrations in solutions were mostly <10 μg l−1 beside Zn (<1200 μg l−1). The present total deposition was estimated at 1.0, 560, 30, 1.2 and 10.4 g ha−1 year−1 for Cd, Zn, Cu, Cr and Ni, respectively. The mass balance (total deposition minus runoff) at the catchment scale indicated actual retention of Zn, Cu and Ni, but an almost balanced budget for Cr and Cd. Considering the soil profile scale, the Oi horizon still acted as a sink, whereas the Oe and Oa horizons were presently sources for all metals. The solid–solution partitioning coefficients indicated higher mobility of Cd and Zn than of Cu, Cr and Ni in forest soils. In the mineral soil horizons, Kd values derived from field measurements were substantially larger than those predicted with empirical regression equations from Sauvé et al. (Environ Sci Technol 34:1125–1131, 2000; Environ Sci Technol 37:5191–5196, 2003). The mineral soil acted as a sink for all metals beside Cd. Dissolved organic C and pH influenced the metal mobility, as indicated by significant correlations to metal concentrations in Oa percolates and runoff. The solid–solution partitioning coefficients indicated higher mobility of Cd and Zn than of Cu, Cr and Ni in forest soils. Overall, the decreased deposition rates have obviously induced a source function of the Oe and Oa horizon for metals. Consequently, mobilization of metals from forest floor during heavy rain events and near surface flow conditions may lead to elevated concentrations in runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New York

    Google Scholar 

  • Alewell C, Lischeid G, Hell U, Manderscheid B (2004) High temporal resolution of ion fluxes in semi-natural ecosystems—gain of information or waste of resources? Biogeochemistry 69:19–35

    Article  Google Scholar 

  • Bergkvist B, Folkeson L, Berggren D (1989) Fluxes of Cu, Zn, Pb, Cd, Cr and Ni in temperate forest ecosystem. A literature review. Water Air Soil Pollut 47:217–286

    Article  Google Scholar 

  • Degryse F, Smolders E, Parker DR (2009) Partitioning oil metals (Cd, Co, Cu, Ni, Pb, Zn) in soils, concepts, methodologies, prediction and applications—a review. Eur J Soil Sci 60:590–612

    Article  Google Scholar 

  • Gerstberger P, Foken T, Kalbitz K (2004) The Lehstenbach and Steinkreuz catchments in NE Bavaria, Germany. Ecological studies. Springer 172, Berlin, pp 15–44

  • Huang J-H, Matzner E (2004) Biogeochemistry of trimethyllead and lead in a forested ecosystem in Germany. Biogeochemistry 71:125–139

    Article  Google Scholar 

  • Huang J-H, Kalbitz K, Matzner E (2008) Mobility of trimethyllead and total lead in the forest floor. Soil Sci Soc J Am 72:978–984

    Article  Google Scholar 

  • Kalbitz K, Glaser B, Bol R (2004) Clear-cutting of a Norway spruce stand: implication for controls on the dynamics of dissolved organic matter in the forest floor. Eur J Soil Sci 55:401–413

    Article  Google Scholar 

  • Kaste JM, Friedland AJ, Stürup S (2003) Using stable and radioactive isotopes to trace atmospherically deposited Pb in Montane forest soils. Environ Sci Technol 37:3560–3567

    Article  Google Scholar 

  • Lang F, Kaupenjohann M (2004) Trace element release from forest floor can be monitored by ion exchange resin tubes. J Plant Nutr Soil Sci 167:177–183

    Article  Google Scholar 

  • Michler G (1983) Heavy metal content in sediments of lakes in southern Bavaria as a sign of long-term environmental impact. In: Dissolved loads of rivers and surface water quantity/quality relationships, proceedings of a symposium held during the XVIII general assembly of the international Union of Geodesy and Geophysics at Hamburg, West Germany, August 15–27, 1983. IAHS Publication 141, pp 405−419

  • Miller EK, Friedland AJ (1994) Lead migration in forest soils: response to changing atmospheric inputs. Environ Sci Technol 28:662–669

    Article  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540

    Article  Google Scholar 

  • Räisänen ML, Kashulina G, Bogatyrev I (1997) Mobility and retention of heavy metals, arsenic and sulphur in podzols at eight locations in northern Finland and Norway and the western half of the Russian Kola Peninsula. J Geochem Explor 59:175–195

    Article  Google Scholar 

  • Sauvé S, McBride M, Hendershot W (1998) Soil solution speciation of lead(II): effects of organic matter and pH. Soil Sci Soc Am J 62:618–621

    Article  Google Scholar 

  • Sauvé S, Hendershot W, Allen HE (2000) Solid–solution partitioning of metals in contaminated soils: dependence on pH, total metal burden and organic matter. Environ Sci Technol 34:1125–1131

    Article  Google Scholar 

  • Sauvé S, Turmel M-C, Roy AG, Courchesne F (2003) Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environ Sci Technol 37:5191–5196

    Article  Google Scholar 

  • Schulte A, Gehrmann J (1996) Entwicklung der Niederschlags-Deposition von Schwermetallen in Westdeutschland. 2. Arsen, Chrom, Kobalt und Nickel. Z Pflanzenernaehr Bodenk 159:385–389

    Google Scholar 

  • Schulte A, Balazs A, Block J, Gehrmann J (1996) Entwicklung der Niederschlags-Deposition von Schwermetallen in West-Deutschland. 1. Blei und Cadmium. Z Pflanzenernaehr Bodenk 159:377–383

    Google Scholar 

  • Schwesig D, Matzner E (2001) Dynamics of mercury and methylmercury in forest floor and runoff of a forested watershed in Central Europe. Biogeochemistry 53:181–200

    Article  Google Scholar 

  • Simúnek J, Sejna M, van Genuchten T (1996) HYDRUS-2D simulating water flow and solute transport in two dimensional variably saturated media. International Ground Water Modeling Center, Golden, CO

  • Suchara I, Sucharová J (2002) Distribution of sulphur and heavy metals in forest floor humus of the Czech Republic. Water Air Soil Pollut 136:289–316

    Article  Google Scholar 

  • Tipping E, Lawlor AJ, Lofts S, Shotbolt L (2006) Simulating the long term chemistry of an upland UK catchment: heavy metals. Environ Pollut 141:139–150

    Article  Google Scholar 

  • Ukonmaanaho L, Starr M, Mannio J, Ruoho-Airola T (2001) Heavy metal budgets for two headwater forested catchments in background areas of Finland. Environ Pollut 114:63–75

    Article  Google Scholar 

  • Wang EX, Bormann FH, Benoit G (1995) Evidence of complete retention of atmospheric lead in the soil of northern hardwood forested ecosystems. Environ Sci Technol 29:735–739

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the analytical supports from Central Analytic BayCEER. We like to thank Gunnar Lischeid and Johannes Lüers for providing climatological and hydrological data at the Lehstenbach catchment. Tobias Zuber helped with the calculation of water fluxes using HYDRUS 2D. Thanks also due to Uwe Hell and Andreas Kolb for their help with fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-How Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JH., Ilgen, G. & Matzner, E. Fluxes and budgets of Cd, Zn, Cu, Cr and Ni in a remote forested catchment in Germany. Biogeochemistry 103, 59–70 (2011). https://doi.org/10.1007/s10533-010-9447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9447-0

Keywords

Navigation