Skip to main content
Log in

Nitrogen deposition effects on soil organic matter chemistry are linked to variation in enzymes, ecosystems and size fractions

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Recent research has dramatically advanced our understanding of soil organic matter chemistry and the role of N in some organic matter transformations, but the effects of N deposition on soil C dynamics remain difficult to anticipate. We examined soil organic matter chemistry and enzyme kinetics in three size fractions (>250 μm, 63–250 μm, and <63 μm) following 6 years of simulated atmospheric N deposition in two ecosystems with contrasting litter biochemistry (sugar maple, Acer saccharum—basswood, Tilia americana and black oak, Quercus velutina—white oak, Q. alba). Ambient and simulated (80-kg NO3 –N ha−1 year−1) atmospheric N deposition were studied in three replicate stands in each ecosystem. We found striking, ecosystem-specific effects of N deposition on soil organic matter chemistry using pyrolysis gas chromatography/mass spectrometry. First, furfural, the dominant pyrolysis product of polysaccharides, was significantly decreased by simulated N deposition in the sugar maple–basswood ecosystem (15.9 vs. 5.0%) but was increased by N deposition in the black oak–white oak ecosystem (8.8 vs. 24.0%). Second, simulated atmospheric N deposition increased the ratio of total lignin derivatives to total polysaccharides in the >250 μm fraction of the sugar maple–basswood ecosystem from 0.9 to 3.3 but there were no changes in other size classes or in the black oak–white oak ecosystem. Third, simulated N deposition increased the ratio of lignin derivatives to N-bearing compounds in the 63–250 and >250 μm fractions in both ecosystems but not in the <63 μm fraction. Relationships between enzyme kinetics and organic matter chemistry were strongest in the particulate fractions (>63 μm) where there were multiple correlations between oxidative enzyme activities and concentrations of lignin derivatives and between glycanolytic enzyme activities and concentrations of carbohydrates. Within silt-clay fractions (<63 μm), these enzyme-substrate correlations were attenuated by interactions with particle surfaces. Our results demonstrate that variation in enzyme activity resulting from atmospheric N deposition is directly linked to changes in soil organic matter chemistry, particularly those that occur within coarse soil size fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adani F, Spagnol M, Nierop KGJ (2007) Biochemical origin and refractory properties of humic acid extracted from maize plants: the contribution of lignin. Biogeochemistry 82:55–65. doi:10.1007/s10533-006-9052-4

    Article  Google Scholar 

  • Allison SD, Jastrow JD (2006) Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biol Biochem 38:3245–3256. doi:10.1016/j.soilbio.2006.04.011

    Article  Google Scholar 

  • Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wilson MA (1992) Aspects of the chemical-structure of soil organic materials as revealed by solid-state C-13 NMR-spectroscopy. Biogeochemistry 16:1–42

    Google Scholar 

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust J Soil Res 35:1061–1083. doi:10.1071/S97004

    Article  Google Scholar 

  • Blackwood CB, Waldrop MP, Zak DR, Sinsabaugh RL (2007) Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environ Microbiol 9:1306–1316. doi:10.1111/j.1462-2920.2007.01250.x

    Article  Google Scholar 

  • Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125:389–399. doi:10.1007/s004420000455

    Article  Google Scholar 

  • Burton AJ, Pregitzer KS, Crawford JN, Zogg GP, Zak DR (2004) Simulated chronic NO3 deposition reduces soil respiration in northern hardwood forests. Glob Change Biol 10:1080–1091. doi:10.1111/j.1365-2486.2004.00737.x

    Article  Google Scholar 

  • Buurman P, van Bergen PF, Jongmans AG, Meijer EL, Duran B, van Lagen B (2005) Spatial and temporal variation in podzol organic matter studied by pyrolysis-gas chromatography/mass spectrometry and micromorphology. Eur J Soil Sci 56:253–270. doi:10.1111/j.1365-2389.2004.00662.x

    Article  Google Scholar 

  • de Alcantara FA, Buurman P, Curi N, Neto AEF, van Lagen B, Meijer EL (2004) Changes in soil organic matter composition after introduction of riparian vegetation on shores of hydroelectric reservoirs (Southeast of Brazil). Soil Biol Biochem 36:1497–1508. doi:10.1016/j.soilbio.2004.04.018

    Article  Google Scholar 

  • DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci Soc Am J 68:132–138

    Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic-matter. Biol Rev Camb Philos Soc 63:433–462. doi:10.1111/j.1469-185X.1988.tb00725.x

    Article  Google Scholar 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manage 196:159–171. doi:10.1016/j.foreco.2004.03.018

    Article  Google Scholar 

  • Gallo M, Amonette R, Lauber C, Sinsabaugh RL, Zak DR (2004) Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol 48:218–229. doi:10.1007/s00248-003-9001-x

    Article  Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366. doi:10.1016/S0146-6380(01)00166-8

    Article  Google Scholar 

  • Grandy AS, Neff JC (2008) Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ 404:297–307

    Article  Google Scholar 

  • Grandy AS, Neff JC, Weintraub MN (2007) Carbon structure and enzyme activities in alpine and forest ecosystems. Soil Biol Biochem 39:2701–2711. doi:10.1016/j.soilbio.2007.05.009

    Article  Google Scholar 

  • Guggenberger G, Zech W, Haumaier L, Christensen BT (1995) Land-use effects on the composition of organic-matter in particle-size separates of soils. 2. CPMAS and solution C-13 NMR analysis. Eur J Soil Sci 46:147–158. doi:10.1111/j.1365-2389.1995.tb01821.x

    Article  Google Scholar 

  • Hempfling R, Schulten HR (1990) Chemical characterization of the organic-matter in forest soils by Curie-point pyrolysis GC MS and pyrolysis field-ionization mass-spectrometry. Org Geochem 15:131–145. doi:10.1016/0146-6380(90)90078-E

    Article  Google Scholar 

  • Hobbie SE, Nadelhoffer KJ, Hogberg P (2002) A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242:163–170. doi:10.1023/A:1019670731128

    Article  Google Scholar 

  • Host GE, Pregitzer KS, Ramm CW, Lusch DP, Cleland DT (1988) Variation in overstory biomass among glacial landforms and ecological land units in northwestern lower Michigan. Can J For Res 18:659–668. doi:10.1139/x88-101

    Article  Google Scholar 

  • Kaal J, Baldock JA, Buurman P, Nierop KGJ, Pontevedra-Pombal X, Martinez-Cortizas A (2007) Evaluating pyrolysis-GC/MS and C-13 CPMAS NMR in conjunction with a molecular mixing model of the Penido Vello peat deposit, NW Spain. Org Geochem 38:1097–1111. doi:10.1016/j.orggeochem.2007.02.008

    Article  Google Scholar 

  • Kandeler E, Stemmer M, Klimanek EM (1999) Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biol Biochem 31:261–273. doi:10.1016/S0038-0717(98)00115-1

    Article  Google Scholar 

  • Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W (2000) Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32:390–400. doi:10.1007/s003740000268

    Article  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257. doi:10.1890/05-0150

    Article  Google Scholar 

  • Leinweber P, Jandl G, Baum C, Eckhardt K-U, Kandeler E (2008) Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol Biochem 40(6):1496–1505. doi:10.1016/j.soilbio.2008.01.003

    Article  Google Scholar 

  • Marx M-C, Kandeler E, Wood M, Wermbter N, Jarvis SC (2005) Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol Biochem 37:35–48. doi:10.1016/j.soilbio.2004.05.024

    Article  Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174. doi:10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2

    Article  Google Scholar 

  • Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917. doi:10.1038/nature01136

    Article  Google Scholar 

  • Neff JC, Harden JW, Gleixner G (2005) Fire effects on soil organic matter content and composition in boreal interior Alaska. Can J For Res 35:2178–2187. doi:10.1139/x05-154

    Article  Google Scholar 

  • Nierop KGJ, Pulleman MM, Marinissen JCY (2001) Management induced organic matter differentiation in grassland and arable soil: a study using pyrolysis techniques. Soil Biol Biochem 33:755–764. doi:10.1016/S0038-0717(00)00223-6

    Article  Google Scholar 

  • Olsson P, Linder S, Giesler R, Hogberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Change Biol 11:1745–1753. doi:10.1111/j.1365-2486.2005.001033.x

    Article  Google Scholar 

  • Parker JL, Fernandez IJ, Rustad LE, Norton SA (2001) Effects of nitrogen enrichment, wildfire, and harvesting on forest-soil carbon and nitrogen. Soil Sci Soc Am J 65:1248–1255

    Article  Google Scholar 

  • Phillips RP, Fahey TJ (2007) Fertilization effects on fine root biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils. New Phytol 176:655–664. doi:10.1111/j.1469-8137.2007.02204.x

    Article  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315. doi:10.1016/S0038-0717(02)00074-3

    Article  Google Scholar 

  • Saiz-Jimenez C (1994) Analytical pyrolysis of humic substances: pitfalls, limitations, and possible solutions. Environ Sci Technol 28:1773–1780. doi:10.1021/es00060a005

    Article  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek M, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224. doi:10.1128/AEM.67.9.4215-4224.2001

    Article  Google Scholar 

  • Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60:1–24. doi:10.1023/A:1016541114786

    Article  Google Scholar 

  • Sinsabaugh RL, Zak DR, Gallo M, Lauber C, Amonette R (2004) Nitrogen deposition and dissolved organic carbon production in northern temperate forests. Soil Biol Biochem 36:1509–1515. doi:10.1016/j.soilbio.2004.04.026

    Article  Google Scholar 

  • Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005) Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75:201–215. doi:10.1007/s10533-004-7112-1

    Article  Google Scholar 

  • Six J, Guggenberger K, Paustian K, Haumaier L, Elliott ET, Zech W (2001) Sources and composition of soil organic matter fractions between and within soil aggregates. Eur J Soil Sci 52:607–618. doi:10.1046/j.1365-2389.2001.00406.x

    Article  Google Scholar 

  • Smemo KA, Zak DR, Pregitzer KS, Burton AJ (2007) Characteristics of DOC exported from northern hardwood forests receiving chronic experimental NO3- deposition. Ecosystems 10:369–379. doi:10.1007/s10021-007-9014-2 NY Print

    Article  Google Scholar 

  • Sollins P, Swanston C, Kleber M, Filley T, Kramer M, Crow S, Caldwell BA, Lajtha K, Bowden R (2006) Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation. Soil Biol Biochem 38:3313–3324. doi:10.1016/j.soilbio.2006.04.014

    Article  Google Scholar 

  • Stankiewicz BA, Mastalerz M, Kruge MA, VanBergen PF, Sadowska A (1997) A comparative study of modern and fossil cone scales and seeds of conifers: a geochemical approach. New Phytol 135:375–393. doi:10.1046/j.1469-8137.1997.00638.x

    Article  Google Scholar 

  • Stemmer M, Von Lutzow M, Kandeler E, Pichlmayer F, Gerzabek MH (1999) The effect of maize straw placement on mineralization of C and N in soil particle size fractions. Eur J Soil Sci 50:73–85. doi:10.1046/j.1365-2389.1999.00204.x

    Article  Google Scholar 

  • Waldrop MP, Firestone MK (2004) Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia 138:275–284. doi:10.1007/s00442-003-1419-9

    Article  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL (2004a) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36:1443–1451. doi:10.1016/j.soilbio.2004.04.023

    Article  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004b) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177. doi:10.1890/03-5120

    Article  Google Scholar 

  • Wang Z, Fernandez IJ (1999) Soil type and forest vegetation influences on forest floor nitrogen dynamics at the Bear Brook Watershed in Maine (BBWM). Environ Monit Assess 55:221–234. doi:10.1023/A:1006134120951

    Article  Google Scholar 

  • White DM, Garland DS, Beyer L, Yoshikawa K (2004) Pyrolysis-GC/MS fingerprinting of environmental samples. J Anal Appl Pyrolysis 71:107–118. doi:10.1016/S0165-2370(03)00101-3

    Article  Google Scholar 

  • Wickland KP, Neff JC (2007) Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry 87(1):29–47. doi:10.1007/s10533-007-9166-3

    Article  Google Scholar 

  • Zak DR, Host GE, Pregitzer KS (1986) Landscape variation of nitrogen mineralization and nitrification. Can J For Res 16:1258–1263. doi:10.1139/x86-223

    Article  Google Scholar 

  • Zak DR, Host GE, Pregitzer KS (1989) Regional variability in nitrogen mineralization, nitrification, and overstory biomass in northern Lower Michigan. Can J For Res 19:1521–1526. doi:10.1139/x89-231

    Article  Google Scholar 

  • Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007) Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 154:349–359. doi:10.1007/s00442-007-0836-6

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to D. Fernandez for providing technical help with the pyrolysis-GC/MS analysis and to several anonymous reviewers who provided very thoughtful and insightful comments on an earlier draft of this manuscript. Funding for this work was provided by a USDA NRI postdoctoral fellowship to A. S. Grandy, the A. W. Mellon foundations the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-03ER63591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stuart Grandy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandy, A.S., Sinsabaugh, R.L., Neff, J.C. et al. Nitrogen deposition effects on soil organic matter chemistry are linked to variation in enzymes, ecosystems and size fractions. Biogeochemistry 91, 37–49 (2008). https://doi.org/10.1007/s10533-008-9257-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9257-9

Keywords

Navigation