Skip to main content

Advertisement

Log in

Physical, biogeochemical and isotopic processes related to heterogeneity of a shallow crystalline rock aquifer

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

This study deals with the chemical characterization of the biogeochemical processes occurring in a shallow aquifer in crystalline rocks. The influence of rock heterogeneity and the related physical processes on the aquifer biogeochemistry have been investigated. A hydrochemical survey (major anion and cation analysis) shows that rock heterogeneity leads to a stronger spatial than temporal variability. Some rapidly recharged and low- mineralized waters are present at the soil/rock interface. However the pumped well intersects a preferential flow path and pumps nitrate-rich water. Sulfur and oxygen isotope data from sulfates in the pumped water clearly show sulfide oxidation with only 20–30% of the oxygen atoms in sulfates formed by sulfide oxidation coming from atmospheric oxygen. This low contribution of molecular oxygen in sulfide oxidation, associated with the drastic decrease in nitrate concentration, involves a marked relationship between the nitrogen and sulfur cycles through denitrification, coupled with sulfide oxidation. Conversely, for rapidly recharged waters, the rock physical heterogeneity allows sulfide oxidation by molecular oxygen indicated by a contribution of atmospheric oxygen of nearly 70% in the newly formed sulfate. As the aquifer biogeochemistry is controlled by the physical characteristics of the rocks, pumping may overcome the natural flux pattern described previously. This anthropogenic disturbance leads to a modification of water pathways (spatial mixing or relative contribution of the fracture/matrix waters to the global fluxes) and, consequently, to a modification of the physical and biogeochemical processes occurring in the aquifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aquilina L, de Dreuzy JR, Bour O, Davy P (2004) Porosity and fluid velocities in the upper continental crust (2 to 4 km) inferred from the injection tests at the Soultz-sous-Forêts geothermal site. Geochim Cosmochim Acta 68:2405–2415

    Article  Google Scholar 

  • Ayraud V (2006) Détermination du temps de résidence des eaux souterraines: application au transfert d’azote dans les aquifères fracturés hétérogènes. Memoires du CAREN no 14, Rennes

  • Bennet PC, Hiebert FK, Robert Rogers J (2000) Microbial control of mineral-groundwater equilibria: macroscale to microscale. Hydrolgeol J 8:47–62

    Article  Google Scholar 

  • Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25:861–884

    Article  Google Scholar 

  • Beven KJ, Germannn P (1982) Macropores and water flow in soils. Water Resour Res 18:1311–1325

    Article  Google Scholar 

  • Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture system in geologic media. Rev Geophys 39:347–383

    Article  Google Scholar 

  • Bouhnik-Le Coz M, Petitjean P, Serrat E, Gruau G (2001) Validation d’un protocole permettant le dosage simultané des cations majeurs et traces dans les eaux douces naturelles par ICP-MS. Géosciences Rennes, Rennes

    Google Scholar 

  • Bour O, Davy P, Darcel C, Odling NE (2002) A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway). J Geophys Res 107:2113. DOI 2110.2129/2001JB000176

    Google Scholar 

  • Bu X, Warner MJ (1995) Solubility of chlorofluorocarbon 113 in water and seawater. Deep-Sea Res Pt I 42:1151–1161

    Article  Google Scholar 

  • Burt TP, Matchett LS, Goulding KWT, Webster CPH, Hancock NE (1999) Denitrification in riparian buffer zones: the role of floodplain hydrology. Hydrol Process 13:1451–1463

    Article  Google Scholar 

  • Cacas MC, Ledoux E, de Marsily G, Tillie B, Barbeau A, Durand E, Feuga B, Peaudecerf P (1990) Modelling fracture flow with a stochastic discrete fracture network: calibration and validation. Water Resour Res 26:479–489

    Article  Google Scholar 

  • Chantraine J, Egal E, Thiéblemont D, Le Goff E, Guerrot C, Ballèvre M, Guennoc P (2001) The cadomian active margin (North Armorican Massif, France): a segment of the North Atlantic Panafrican belt. Tectonophysics 331:1–18

    Article  Google Scholar 

  • Chen JY, Tang CY, Sakura Y, Kondoh A, Yu JJ, Shimada J, Tanaka T (2004) Spatial geochemical and isotopic characteristics associated with groundwater flow in the North China plain. Hydrol Process 18:3133–3146

    Article  Google Scholar 

  • Clark DI, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis publishers, New York

    Google Scholar 

  • Clauser C (1992) Permeability of crystalline rocks. Eos Trans Am Geophys Union 73:237–238

    Google Scholar 

  • Clément J-C, Pinay G, Marmonier P (2002) Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. J Environ Qual 31:1025–1037

    Google Scholar 

  • Clément J-C, Aquilina L, Bour O, Plaine K, Burt TP, Pinay G (2003) Hydrogeological flowpaths and NO 3 removal rates within a riparian flooplain along fourth-order stream in Brittany (France). Hydrol Process 17:1177–1195

    Article  Google Scholar 

  • Cook PG, Love AJ, Robinson NI, Simmons CT (2005) Groundwater ages in fractured rock aquifers. J Hydrol 308:284–301

    Article  Google Scholar 

  • de Dreuzy JR, Darcel C, Davy P, Bour O (2004) Influence of spatial correlation of fracture centers on the permeability of two-dimensional fracture networks following a power law length distribution. Water Resour Res. W01502: DOI 10.1029/2003WR002260

  • Durand V (2005) Recherche multidisciplinaire pour caractériser deux aquifères fracturés : les eaux minérales de Plancoët en contexte métamorphique, et de Quézac en milieu carbonaté. Sciences de la Terre. Université de Pierre et Marie Curie – Paris VI

  • Feast NA, Hiscock KM, Dennis PF, Bottrell SH (1997) Controls on stable isotope profiles in the Chalk aquifer of north-east Norfolk, UK, with special reference to dissolved sulphate. Appl Geochem 12:803–812

    Article  Google Scholar 

  • Frind EO, Duynisveld WHM, Strebel O, Böttcher J (1990) Modeling of multicomponent transport with microbial transformation in groundwater: the Furhberg case. Water Resour Res 26:1707–1719

    Article  Google Scholar 

  • Geoarmor (2000) Etude hydrogéologique: relation captage/ruisseau de Quincampoix (report no BL/GG-GR/00R1839). SIAEP de la région nord de Rennes

  • Geoarmor (2002) Etude de l’origine des chlorures présents dans l’eau du forage (report no GG-FD/R2550). SIAEP de la Région Nord de Rennes, Betton

  • Gouze P, Noiriel C, Bruderer C, Loggia D, Leprovost R (2003) X-ray tomography characterization of fracture surfaces during dissolution. Geophys Res Lett 30:1267. DOI 1029/2002GL016755

    Google Scholar 

  • Grassi S, Cortecci G (2005) Hydrogeology and geochemistry of the multilayered confined aquifer of the Pisa plain (Tuscany – central Italy). Appl Geochem 20:41–54

    Article  Google Scholar 

  • Hill AR, Vidon P, Langat J (2004) Denitrification potential in relation to lithology in five headwater riparian zones. J Environ Qual 33:911–919

    Article  Google Scholar 

  • Höhener P, Werner D, Balsiger C, Pasteris G (2003) Worldwide occurence and fate of chlorofluorocarbons in groundwater. Crit Rev Environ Sci Technol 33:1–29

    Article  Google Scholar 

  • Honisch M, Hellmeier C, Weiss K (2002) Response of surface and subsurface water quality to land use changes. Geoderma 105:277–298

    Article  Google Scholar 

  • Kelly WR (1997) Heterogeneities in ground-water geochemistry in a sand aquifer beneath and irrigated field. J Hydrol 198:15–176

    Article  Google Scholar 

  • Kendall C, Caldwell EA (1998) Fundamentals of isotope geochemistry. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elservier Science B.V., Amsterdam, pp 51–86

    Google Scholar 

  • Kölle W, Strebel O, Böttcher J (1985) Formation of sulphate by microbial denitrification in a reducing aquifer. Water Supply 3:35–40

    Google Scholar 

  • Labasque T (2006) Analyse des CFC dans les eaux souterraines. Géosciences Rennes, Cahiers techniques de Géosciences Rennes, Rennes

    Google Scholar 

  • Legout C (2006) Etude des mécanismes hydrogéologiques et biogéochimiques de la recharge des nappes libres. Mémoires du CAREN no 16, Rennes

  • Legout C, Molénat J, Aquilina L, Gascuel Odoux C, Faucheux M, Fauvel Y, Bariac T (in prep) Solute transport in soil and weathered granite with fluctuating water table

  • Legout C, Molénat J, Lefebvre S, Marmonier P, Aquilina L (2005) Investigation of biogeochemical activities in the soil and unsaturated zone of weathered granite. Biogeochemistry 75:329–350

    Google Scholar 

  • Little BJ, Wagner PA, Lewandowski Z (1997) Spatial relationships between bacteria and mineral surfaces. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interaction between microbes and minerals. Mineralogical society of America, Washington, pp 5–31

    Google Scholar 

  • Luo J, Tillman RW, Ball PR (1999) Factors regulating denitrification in a soil under pasture. Soil Biol Biochem 31:913–927

    Article  Google Scholar 

  • Mariotti A (1986) La dénitrification dans les eaux souterraines, principes et méthodes de son identification: une revue. J Hydrol 88:1–23

    Article  Google Scholar 

  • Martin C, Aquilina L, Gascuel Odoux C, Molénat J, Faucheux M, Ruiz L (2004) Seasonal and interannual variation of nitrate and chloride in stream water related to spatial and temporal patterns of groundwater concentrations in agricultural catchments. Hydrol Process 18:1237–1254

    Article  Google Scholar 

  • Molénat J, Gascuel Odoux C (2002) Modelling flow and nitrate transport in groundwater for the prediction of water travel times and of consequences of land use evolution on water chemistry. Hydrol Process 16:479–492

    Article  Google Scholar 

  • Molénat J, Davy P, Gascuel Odoux C, Durand P (1999) Study of three subsurface hydrologic systems based on spectral and cross-spectral analysis of time series. J Hydrol 222:152–164

    Article  Google Scholar 

  • Montoroi J-P, Robain H, Schmutz M, Martin C, Molénat J, Ruiz L (2001) Analyse d’un réseau piezométrique par imagerie électrique multi-électrodes (Bassin versant de Kerbernez, Bretagne). 3ème colloque GEOFCAN, Orléans

    Google Scholar 

  • Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571

    Article  Google Scholar 

  • Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport trough fractured rocks. Hydrolgeol J 13:124–147

    Article  Google Scholar 

  • Parkin T (1987) Soil microsite as a source of denitrification variability. Soil Sci Soc Am J 51:1194–1199

    Article  Google Scholar 

  • Pauwels H, Kloppmann W, Foucher JC, Martelat A, Fritsche V (1998) Field tracer test for denitrification in a pyrite-bearing schist aquifer. Appl Geochem 13:767–778

    Article  Google Scholar 

  • Pauwels H, Foucher JC, Kloppmann W (2000) Denitrification and mixing in a schist aquifer: influence on water chemistry and isotopes. Chem Geol 168:307–324

    Article  Google Scholar 

  • Pauwels H, Lachassagne P, Bordenave P, Foucher JC, Martelat A (2001) Temporal variability of nitrate concentration in a schist aquifer and transfer to surface waters. Appl Geochem 16:583–596

    Article  Google Scholar 

  • Plummer LN, Busenberg E (2000) Chlorofluorocarbons. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, pp 441–478

    Google Scholar 

  • Plummer LN, Busenberg E, Böhlke JK, Nelms DL, Michel RL, Schlosser P (2001) Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chem Geol 179:93–111

    Article  Google Scholar 

  • Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27(8):2027–2045

    Article  Google Scholar 

  • Pruvost J, Connan O, Marty Y, Le Corre P (1999) A sampling device for collection and analysis of volatile halocarbons in coastal and oceanic water. Analyst 124:1389–1394

    Article  Google Scholar 

  • Rosenberry DO (2003) The significance of ground water in small watershed studies. Ground Water 41:881–882

    Article  Google Scholar 

  • Sanchez-Peres JM, Tremolieres M (2003) Change in groundwater chemistry as a consequence of suppression of floods: the case of the Rhine flooplain. J Hydrol 270:89–104

    Article  Google Scholar 

  • Schramm A (2003) In situ analysis of structure and activity of the nitrifying community in biofilms, agregates and sediments. Geomicrobiol J 20:313–333. DOI 310.1080/01290450390241026

    Google Scholar 

  • Schürmann A, Schroth MH, Saurer M, Bernasconi SM, Zeyer J (2003) Nitrate-consuming processes in a petroleum-contamined aquifer quantified using push-pull tests combined with 15N isotope and acetylene-inhibition methods. J Contam Hydrol 66:59–77

    Article  Google Scholar 

  • Segall P, Pollard D (1983) Joint formation in granitic rock of the Sierra Nevada. Geol Soc Am Bull 94:563–575

    Article  Google Scholar 

  • Shapiro SD, Rowe G, Schlosser P, Ludin A, Stute M (1998) Tritium-helium 3 dating under complex conditions in hydraulically stressed areas of a buried-valley aquifer. Water Resour Res 34:1165–1180

    Article  Google Scholar 

  • Strebel O, Böttcher J, Fritz P (1990) Use of isotope fractionation of sulfate-sulfur and sulfate-oxygen to assess bacterial desulfurication in a sandy aquifer. J Hydrol 121:155–172

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. John Wiley and sons, New-York

    Google Scholar 

  • Stutter MI, Deeks LK, Billett MF (2005) Transport of conservative and reactive tracers through naturally structured upland podzol field lysimeter. J Hydrol 300:1–19

    Article  Google Scholar 

  • Tarits C, Aquilina L, Ayraud V, Pauwels H, Davy P, Touchard F, Bour O (2006) Oxido-reduction sequence related to flux variations of groundwater from a fractured basement aquifer (Ploemeur area, France). Appl Geochem 21:29

    Article  Google Scholar 

  • Toran L, Harris RF (1989) Interpretation of sulfur and oxygen isotopes in biological and abiological sulfide oxidation. Geochim Cosmochim Acta 53:2341–2348

    Article  Google Scholar 

  • Trautmann F, Paris F, Carn A (2000) Carte géologique de la France au 1/50000. Feuille de Rennes no 317. BRGM, Orléans

    Google Scholar 

  • Tsang C-F, Neretnieks I (1998) Flow channelling in heterogeneous fractured rocks. Rev Geophys 36:257–298

    Article  Google Scholar 

  • Van Everdingen RO, Krouse HR (1985) Isotope composition of sulphates generated by bacterial and abiological oxidation. Nature 315:395–396

    Article  Google Scholar 

  • Warner MJ, Weiss RF (1985) Solubilities of chlorofluorocarbons 11 et 12 in water and seawater. Deep-Sea Res 32:1485–1497

    Article  Google Scholar 

  • Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38:16-11–16-13

    Google Scholar 

  • Whitehead PJ, Johnes PJ, Butterfield D (2002) Steady state and dynamics modelling of nitrogen in the river Kennet: impacts of land use change since the 1930’s. Sci Total Environ 282–283:417–434

    Article  Google Scholar 

  • Wyns R, Baltassat J-M, Lachassagne P, Legchenko A, Vairon J, Mathieu F (2004) Application of magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bull Soc géol Fr 175:21–34

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to municipality and CGE (particularly to Anthony Rohou) for the site access. Thanks to Yves Quété for sharing his knowledge about investigated site. Thanks to Odile Hénin, Patrice Petitjean and Martine Bouhnik-Le Coz, for analyses. Financial and field support have been provided by the region Bretagne regional Council (PRIR DATEAU) and BRGM (funding of V. Ayraud thesis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Aquilina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayraud, V., Aquilina, L., Pauwels, H. et al. Physical, biogeochemical and isotopic processes related to heterogeneity of a shallow crystalline rock aquifer. Biogeochemistry 81, 331–347 (2006). https://doi.org/10.1007/s10533-006-9044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-006-9044-4

Keywords

Navigation